YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Geotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 008::page 06022016
    Author:
    Jianbin Tang
    ,
    Xiangnan Wang
    ,
    Xi Chen
    ,
    Dongyong Wang
    ,
    Yuzhen Yu
    DOI: 10.1061/(ASCE)GM.1943-5622.0002462
    Publisher: ASCE
    Abstract: Within the framework of second-order cone programming optimized micropolar continuum finite-element method (CosFEM-SOCP), the geotechnical strain localization can be adequately modeled. In most existing literatures, however, the constant internal characteristic length lc has been adopted and less attention has been paid to the evolution of lc. To more accurately predict the strain localization, response, and stability of a geotechnical system, one relationship for evolving lv that relies on the equivalent plastic strain is implemented and investigated. Based on one homogeneous slope example and one rigid strip footing example, it was found that geotechnical stability may not be significantly affected by evolving lv, indicating that constant lc can be simply applied to geotechnical stability analysis. For the rigid strip footing problem, nevertheless, the effects of evolving lv on the pressure–displacement response curves should not be ignored, and the influence range of the shear band predicted by CosFEM-SOCP with evolving lv is generally smaller than that predicted by CosFEM-SOCP with constant lc. Consequently, in order to more accurately predict the pressure–displacement response curves and the failure zone, the evolving lv will be adequately assessed and modeled.
    • Download: (1.427Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Geotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287619
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorJianbin Tang
    contributor authorXiangnan Wang
    contributor authorXi Chen
    contributor authorDongyong Wang
    contributor authorYuzhen Yu
    date accessioned2022-12-27T20:34:51Z
    date available2022-12-27T20:34:51Z
    date issued2022/08/01
    identifier other(ASCE)GM.1943-5622.0002462.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287619
    description abstractWithin the framework of second-order cone programming optimized micropolar continuum finite-element method (CosFEM-SOCP), the geotechnical strain localization can be adequately modeled. In most existing literatures, however, the constant internal characteristic length lc has been adopted and less attention has been paid to the evolution of lc. To more accurately predict the strain localization, response, and stability of a geotechnical system, one relationship for evolving lv that relies on the equivalent plastic strain is implemented and investigated. Based on one homogeneous slope example and one rigid strip footing example, it was found that geotechnical stability may not be significantly affected by evolving lv, indicating that constant lc can be simply applied to geotechnical stability analysis. For the rigid strip footing problem, nevertheless, the effects of evolving lv on the pressure–displacement response curves should not be ignored, and the influence range of the shear band predicted by CosFEM-SOCP with evolving lv is generally smaller than that predicted by CosFEM-SOCP with constant lc. Consequently, in order to more accurately predict the pressure–displacement response curves and the failure zone, the evolving lv will be adequately assessed and modeled.
    publisherASCE
    titleGeotechnical Strain Localization Analysis Based on Micropolar Continuum Theory Considering Evolution of Internal Characteristic Length
    typeJournal Article
    journal volume22
    journal issue8
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002462
    journal fristpage06022016
    journal lastpage06022016_10
    page10
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian