YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Energy Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Physical Properties and Influencing Factors of Longmaxi Shale in Sichuan Basin

    Source: Journal of Energy Engineering:;2022:;Volume ( 148 ):;issue: 006::page 04022034
    Author:
    Shen Li
    ,
    Jun Yang
    ,
    Bei Jiang
    ,
    Qingping Jiang
    ,
    Xingjian Wei
    ,
    Liu Yang
    DOI: 10.1061/(ASCE)EY.1943-7897.0000856
    Publisher: ASCE
    Abstract: The physical properties of shale reservoirs directly affect the form of shale gas and its preservation conditions, and an evaluation of these properties has great significance on the storage and exploitation of shale gas. In this study, the Longmaxi Formation shale in the Sichuan Basin was considered as the research object. The parameters of porosity, permeability, mineral composition, total organic carbon content, density, in-situ stress, brittleness index, and fluid saturation of the samples were obtained through a series of tests. The influence of each parameter on the porosity and permeability was analyzed, and a weight analysis was conducted using an analytic hierarchy process (AHP). The results show that: clay mineral content in the mineral composition has a positive correlation with porosity, and the content of brittle minerals can affect the fracture development density and improve the permeability of samples; the total organic carbon content has a positive correlation with porosity and permeability; increases in density and in-situ stress will significantly reduce the porosity and permeability of samples; the brittleness index has a negative correlation with porosity and a positive correlation with permeability; water saturation has a positive correlation with porosity, gas saturation has a negative correlation with porosity, and the movable oil saturation has an obvious logarithmic relationship with porosity and a negative correlation with permeability. Furthermore, the AHP was used to analyze the specific effects of various parameters on porosity and permeability, with the weight of total organic carbon content > mineral composition > brittleness index > density > in-situ stress > fluid saturation. In this study, we evaluated the physical properties of shale reservoirs, which provides an important basis for shale reservoir evaluation and mining area selection.
    • Download: (4.421Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Physical Properties and Influencing Factors of Longmaxi Shale in Sichuan Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287606
    Collections
    • Journal of Energy Engineering

    Show full item record

    contributor authorShen Li
    contributor authorJun Yang
    contributor authorBei Jiang
    contributor authorQingping Jiang
    contributor authorXingjian Wei
    contributor authorLiu Yang
    date accessioned2022-12-27T20:34:32Z
    date available2022-12-27T20:34:32Z
    date issued2022/12/01
    identifier other(ASCE)EY.1943-7897.0000856.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287606
    description abstractThe physical properties of shale reservoirs directly affect the form of shale gas and its preservation conditions, and an evaluation of these properties has great significance on the storage and exploitation of shale gas. In this study, the Longmaxi Formation shale in the Sichuan Basin was considered as the research object. The parameters of porosity, permeability, mineral composition, total organic carbon content, density, in-situ stress, brittleness index, and fluid saturation of the samples were obtained through a series of tests. The influence of each parameter on the porosity and permeability was analyzed, and a weight analysis was conducted using an analytic hierarchy process (AHP). The results show that: clay mineral content in the mineral composition has a positive correlation with porosity, and the content of brittle minerals can affect the fracture development density and improve the permeability of samples; the total organic carbon content has a positive correlation with porosity and permeability; increases in density and in-situ stress will significantly reduce the porosity and permeability of samples; the brittleness index has a negative correlation with porosity and a positive correlation with permeability; water saturation has a positive correlation with porosity, gas saturation has a negative correlation with porosity, and the movable oil saturation has an obvious logarithmic relationship with porosity and a negative correlation with permeability. Furthermore, the AHP was used to analyze the specific effects of various parameters on porosity and permeability, with the weight of total organic carbon content > mineral composition > brittleness index > density > in-situ stress > fluid saturation. In this study, we evaluated the physical properties of shale reservoirs, which provides an important basis for shale reservoir evaluation and mining area selection.
    publisherASCE
    titleAnalysis of Physical Properties and Influencing Factors of Longmaxi Shale in Sichuan Basin
    typeJournal Article
    journal volume148
    journal issue6
    journal titleJournal of Energy Engineering
    identifier doi10.1061/(ASCE)EY.1943-7897.0000856
    journal fristpage04022034
    journal lastpage04022034_13
    page13
    treeJournal of Energy Engineering:;2022:;Volume ( 148 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian