YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis and Optimization of Simultaneous Nitrification, Denitrification, and Phosphorus Removal in Sequencing Batch Reactors for Sewage Treatment at High-Altitude Areas

    Source: Journal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 011::page 04022067
    Author:
    Jingya Wu
    ,
    Liling Zhang
    ,
    Meng Zhang
    ,
    Yongze Lu
    ,
    Yani Zhao
    ,
    Shuping Li
    ,
    Liwei Sun
    ,
    Guangcan Zhu
    DOI: 10.1061/(ASCE)EE.1943-7870.0002054
    Publisher: ASCE
    Abstract: The biological treatment process in high-altitude areas faces the problems of low biological activities, high aeration energy consumption, and low treatment efficiency due to the low atmosphere pressure and consequently low oxygen content. As a new type of simultaneous nitrogen and phosphorus removal process, simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) has the advantages of high efficiency, low operation cost, and low aeration energy. Compared with the traditional sewage biological treatment process, SNDPR needs less dissolved oxygen (DO) and can save carbon source, so it may be suitable for solving the problems in high-altitude areas caused by low pressure and low oxygen. In this study, SNDPR system reactors were operated under different atmosphere pressures, one at 100 kPa and three at 72 kPa, with different anaerobic/aeration time. The chemical oxygen demand (COD) and total phosphate (TP) removal performance remained the same efficiency, while the nitrogen-removal rate increased slightly at 72 kPa. The low atmosphere pressure enhanced the phosphorus-accumulating organisms but inhibited ammonia-oxidizing bacteria based on the cycle study results. Studies on the activities of enzymes related to nitrogen removal showed that the processes of NH4+→NH2OH→NO2− and NO3−→NO2− were enhanced, while the processes of NO2−→NO3− and NO2−→NO were restrained as the atmosphere pressure declined. Under the condition of 72 kPa, the SNDPR systems were optimized by prolonging the anaerobic time and reducing the aeration time. The residual ammonium concentration increased predictably (<5  mg/L) as the aeration time decreased, while the nitrogen-removal efficiency improved. The aeration energy consumption at 72 kPa by a shorter aeration time was 89% of that at 100 kPa. The further study on the microbial community analysis showed that the abundance of Dechloromonas [identified as denitrifying phosphorus-accumulating organisms (DPAOs)] increased from 0.126% at 100 kPa to 5.499% at 72 kPa, which explained the nitrogen removal and phosphate uptake under the low atmosphere pressure.
    • Download: (1.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis and Optimization of Simultaneous Nitrification, Denitrification, and Phosphorus Removal in Sequencing Batch Reactors for Sewage Treatment at High-Altitude Areas

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4287580
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJingya Wu
    contributor authorLiling Zhang
    contributor authorMeng Zhang
    contributor authorYongze Lu
    contributor authorYani Zhao
    contributor authorShuping Li
    contributor authorLiwei Sun
    contributor authorGuangcan Zhu
    date accessioned2022-12-27T20:33:51Z
    date available2022-12-27T20:33:51Z
    date issued2022/11/01
    identifier other(ASCE)EE.1943-7870.0002054.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4287580
    description abstractThe biological treatment process in high-altitude areas faces the problems of low biological activities, high aeration energy consumption, and low treatment efficiency due to the low atmosphere pressure and consequently low oxygen content. As a new type of simultaneous nitrogen and phosphorus removal process, simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) has the advantages of high efficiency, low operation cost, and low aeration energy. Compared with the traditional sewage biological treatment process, SNDPR needs less dissolved oxygen (DO) and can save carbon source, so it may be suitable for solving the problems in high-altitude areas caused by low pressure and low oxygen. In this study, SNDPR system reactors were operated under different atmosphere pressures, one at 100 kPa and three at 72 kPa, with different anaerobic/aeration time. The chemical oxygen demand (COD) and total phosphate (TP) removal performance remained the same efficiency, while the nitrogen-removal rate increased slightly at 72 kPa. The low atmosphere pressure enhanced the phosphorus-accumulating organisms but inhibited ammonia-oxidizing bacteria based on the cycle study results. Studies on the activities of enzymes related to nitrogen removal showed that the processes of NH4+→NH2OH→NO2− and NO3−→NO2− were enhanced, while the processes of NO2−→NO3− and NO2−→NO were restrained as the atmosphere pressure declined. Under the condition of 72 kPa, the SNDPR systems were optimized by prolonging the anaerobic time and reducing the aeration time. The residual ammonium concentration increased predictably (<5  mg/L) as the aeration time decreased, while the nitrogen-removal efficiency improved. The aeration energy consumption at 72 kPa by a shorter aeration time was 89% of that at 100 kPa. The further study on the microbial community analysis showed that the abundance of Dechloromonas [identified as denitrifying phosphorus-accumulating organisms (DPAOs)] increased from 0.126% at 100 kPa to 5.499% at 72 kPa, which explained the nitrogen removal and phosphate uptake under the low atmosphere pressure.
    publisherASCE
    titleAnalysis and Optimization of Simultaneous Nitrification, Denitrification, and Phosphorus Removal in Sequencing Batch Reactors for Sewage Treatment at High-Altitude Areas
    typeJournal Article
    journal volume148
    journal issue11
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0002054
    journal fristpage04022067
    journal lastpage04022067_13
    page13
    treeJournal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian