YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Composites for Construction
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mechanical Response of Timber Beams Strengthened with Variable Amounts of CFRP and Bamboo Scrimber Layers

    Source: Journal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 004::page 04022038
    Author:
    Yang Wei
    ,
    Si Chen
    ,
    Shuaifeng Tang
    ,
    Donglin Peng
    ,
    Kang Zhao
    DOI: 10.1061/(ASCE)CC.1943-5614.0001228
    Publisher: ASCE
    Abstract: This paper proposes a novel method for strengthening existing timber beams that can effectively improve the deformability of beams. As high-performance engineered bamboo, bamboo scrimber was attached to the bottom tensile area of a timber beam together with carbon fiber–reinforced polymer (CFRP) layers. The CFRP was used to improve flexural strength, and the bamboo scrimber was used to enhance the flexural stiffness and strength of the original timber beams. Fourteen timber beams were tested to study the flexural behavior of the reinforced timber beams. The main test parameters included the bamboo scrimber thickness and the number of CFRP layers. The results showed that the stiffness and bending strength of the beam increased with the increasing thickness of the bamboo scrimber, but no noticeable effect was observed with the addition of the CFRP layers. The cross-sectional stiffness at the serviceability limit state and ultimate bending strength increased by approximately 70%–130% and 50%–90%, respectively. A stable and durable platform segment was observed for most reinforced beams, which displayed excellent deformability. The large deformable behavior was mainly due to the fact that the addition of bamboo scrimber delayed the tensile failure of the wood, and timber under compression parallel to the grain showed plastic behavior. By considering the simplified stress–strain relationship for the constituent materials and force equilibrium in the cross section, an analytical strength model was developed for predicting the flexural capacity of timber beams reinforced with bamboo scrimber.
    • Download: (1.581Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mechanical Response of Timber Beams Strengthened with Variable Amounts of CFRP and Bamboo Scrimber Layers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286924
    Collections
    • Journal of Composites for Construction

    Show full item record

    contributor authorYang Wei
    contributor authorSi Chen
    contributor authorShuaifeng Tang
    contributor authorDonglin Peng
    contributor authorKang Zhao
    date accessioned2022-08-18T12:37:31Z
    date available2022-08-18T12:37:31Z
    date issued2022/06/14
    identifier other%28ASCE%29CC.1943-5614.0001228.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286924
    description abstractThis paper proposes a novel method for strengthening existing timber beams that can effectively improve the deformability of beams. As high-performance engineered bamboo, bamboo scrimber was attached to the bottom tensile area of a timber beam together with carbon fiber–reinforced polymer (CFRP) layers. The CFRP was used to improve flexural strength, and the bamboo scrimber was used to enhance the flexural stiffness and strength of the original timber beams. Fourteen timber beams were tested to study the flexural behavior of the reinforced timber beams. The main test parameters included the bamboo scrimber thickness and the number of CFRP layers. The results showed that the stiffness and bending strength of the beam increased with the increasing thickness of the bamboo scrimber, but no noticeable effect was observed with the addition of the CFRP layers. The cross-sectional stiffness at the serviceability limit state and ultimate bending strength increased by approximately 70%–130% and 50%–90%, respectively. A stable and durable platform segment was observed for most reinforced beams, which displayed excellent deformability. The large deformable behavior was mainly due to the fact that the addition of bamboo scrimber delayed the tensile failure of the wood, and timber under compression parallel to the grain showed plastic behavior. By considering the simplified stress–strain relationship for the constituent materials and force equilibrium in the cross section, an analytical strength model was developed for predicting the flexural capacity of timber beams reinforced with bamboo scrimber.
    publisherASCE
    titleMechanical Response of Timber Beams Strengthened with Variable Amounts of CFRP and Bamboo Scrimber Layers
    typeJournal Article
    journal volume26
    journal issue4
    journal titleJournal of Composites for Construction
    identifier doi10.1061/(ASCE)CC.1943-5614.0001228
    journal fristpage04022038
    journal lastpage04022038-13
    page13
    treeJournal of Composites for Construction:;2022:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian