YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Car-Following Network Model: An Analysis of Trip Delay

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 009::page 04022057
    Author:
    Paul J. Ossenbruggen
    DOI: 10.1061/JTEPBS.0000700
    Publisher: ASCE
    Abstract: In this study, 20 drivers, who maintain a safe distance at all speeds, are monitored to help determine the principal reason for trip delay. The aim was to develop a driver-assisted technology device or devices to enhance driver comfort and safety. The use of vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), or a combination of devices that can quickly collect and analyze data is contemplated. Collecting real-time driver response data is a challenge and extremely expensive. For these reasons, a stochastic car-following model, called a car-following network model (CFNM), was developed. It features 20 simulated passenger-car drivers traveling around a test track with 2 cruising zones and a bottleneck. Each driver strives to minimize the individual trip time. The model accounts for (1) driver decision-making lapses made over time, (2) a driver’s inability to precisely control speed, and (3) a driver’s desire to comfortably accelerate and decelerate. Vehicle acceleration and deceleration rates are constrained for (4) driver comfort, and (5) driver health, i.e., vehicle top and lower speeds are adjusted to limit g-forces. A linear acceleration model and stochastic differential equation are introduced into the CFNM. The stochastic contribution associated with a driver’s inability to precisely control speed is called traffic noise. A model calibration scheme was developed that ensures that the CFNM forecasts of time, speed, and location are reliable. The relationships between traffic noise and delay and road design and delay are discussed. Analyses show that road design and traffic platooning, which are closely associated with traffic noise and driver concern for safety, are critical factors. No single factor can explain delay. The forecast results suggest that three separate assisted-driver technologies will be needed to deal with start-up, cruise, and arrival delay.
    • Download: (1.917Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Car-Following Network Model: An Analysis of Trip Delay

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286892
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorPaul J. Ossenbruggen
    date accessioned2022-08-18T12:36:23Z
    date available2022-08-18T12:36:23Z
    date issued2022/06/23
    identifier otherJTEPBS.0000700.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286892
    description abstractIn this study, 20 drivers, who maintain a safe distance at all speeds, are monitored to help determine the principal reason for trip delay. The aim was to develop a driver-assisted technology device or devices to enhance driver comfort and safety. The use of vehicle-to-vehicle (V2V), vehicle-to-everything (V2X), or a combination of devices that can quickly collect and analyze data is contemplated. Collecting real-time driver response data is a challenge and extremely expensive. For these reasons, a stochastic car-following model, called a car-following network model (CFNM), was developed. It features 20 simulated passenger-car drivers traveling around a test track with 2 cruising zones and a bottleneck. Each driver strives to minimize the individual trip time. The model accounts for (1) driver decision-making lapses made over time, (2) a driver’s inability to precisely control speed, and (3) a driver’s desire to comfortably accelerate and decelerate. Vehicle acceleration and deceleration rates are constrained for (4) driver comfort, and (5) driver health, i.e., vehicle top and lower speeds are adjusted to limit g-forces. A linear acceleration model and stochastic differential equation are introduced into the CFNM. The stochastic contribution associated with a driver’s inability to precisely control speed is called traffic noise. A model calibration scheme was developed that ensures that the CFNM forecasts of time, speed, and location are reliable. The relationships between traffic noise and delay and road design and delay are discussed. Analyses show that road design and traffic platooning, which are closely associated with traffic noise and driver concern for safety, are critical factors. No single factor can explain delay. The forecast results suggest that three separate assisted-driver technologies will be needed to deal with start-up, cruise, and arrival delay.
    publisherASCE
    titleA Car-Following Network Model: An Analysis of Trip Delay
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000700
    journal fristpage04022057
    journal lastpage04022057-17
    page17
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian