YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part A: Systems
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Exploring Traffic Crash Occurrence Mechanism toward Cross-Area Freeways via an Improved Data Mining Approach

    Source: Journal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 009::page 04022052
    Author:
    Yang Yang
    ,
    Zhenzhou Yuan
    ,
    Ran Meng
    DOI: 10.1061/JTEPBS.0000698
    Publisher: ASCE
    Abstract: Accurately identifying traffic crash risk factors is an important way to improve freeway safety. The purpose of this research is to reveal the internal coupling mechanisms of and differences between freeway traffic crashes in various area types, as well as to overcome the defects of compatibility and accuracy in the application of conventional data mining algorithms toward road traffic safety. First, the area types were divided into urban, suburban, and mountainous freeways in this research, based on the UW-DRIVENet (Digital Roadway Interactive Visualization and Evaluation Network, University of Washington) transportation big data platform, where data of more than 30,000 traffic crashes in Washington state in 2016 were extracted. The data set was designed via six dimensions: people, vehicle, road, environment, crash, and time. Furthermore, the weighted orientated multiple dimension interactive Apriori algorithm (WOMDI-Apriori) was proposed. In this improved algorithm, a subjective and objective joint weighting model based on interval analytic hierarchy process (IAHP) and gray relational degree was applied to quantify the weight of data fields. Finally, regarding three different area types of freeways, the improved algorithm was adopted to mine the association rules from the perspective of multidimensional interaction: full mapping crash cause and crash dimension autocorrelation perspectives. The results revealed the differences in traffic crash causes and risk factors of cross-freeways. The results show that the accuracy of the improved WOMDI-Apriori algorithm is 82.7%, 88.5%, and 80.5% higher than that of the conventional Apriori association rule algorithm when applied to urban, suburban, and mountainous area freeways, respectively, which indicates that WOMDI-Apriori algorithm can better reveal the causes of freeway traffic crashes and identify crash precursors more accurately. In conclusion, the WOMDI-Apriori algorithm proposed in this research can be used as an effective approach for risk identification of freeway traffic crashes and can also provide theoretical guidance for future freeway traffic safety improvement.
    • Download: (4.836Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Exploring Traffic Crash Occurrence Mechanism toward Cross-Area Freeways via an Improved Data Mining Approach

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286890
    Collections
    • Journal of Transportation Engineering, Part A: Systems

    Show full item record

    contributor authorYang Yang
    contributor authorZhenzhou Yuan
    contributor authorRan Meng
    date accessioned2022-08-18T12:36:19Z
    date available2022-08-18T12:36:19Z
    date issued2022/06/20
    identifier otherJTEPBS.0000698.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286890
    description abstractAccurately identifying traffic crash risk factors is an important way to improve freeway safety. The purpose of this research is to reveal the internal coupling mechanisms of and differences between freeway traffic crashes in various area types, as well as to overcome the defects of compatibility and accuracy in the application of conventional data mining algorithms toward road traffic safety. First, the area types were divided into urban, suburban, and mountainous freeways in this research, based on the UW-DRIVENet (Digital Roadway Interactive Visualization and Evaluation Network, University of Washington) transportation big data platform, where data of more than 30,000 traffic crashes in Washington state in 2016 were extracted. The data set was designed via six dimensions: people, vehicle, road, environment, crash, and time. Furthermore, the weighted orientated multiple dimension interactive Apriori algorithm (WOMDI-Apriori) was proposed. In this improved algorithm, a subjective and objective joint weighting model based on interval analytic hierarchy process (IAHP) and gray relational degree was applied to quantify the weight of data fields. Finally, regarding three different area types of freeways, the improved algorithm was adopted to mine the association rules from the perspective of multidimensional interaction: full mapping crash cause and crash dimension autocorrelation perspectives. The results revealed the differences in traffic crash causes and risk factors of cross-freeways. The results show that the accuracy of the improved WOMDI-Apriori algorithm is 82.7%, 88.5%, and 80.5% higher than that of the conventional Apriori association rule algorithm when applied to urban, suburban, and mountainous area freeways, respectively, which indicates that WOMDI-Apriori algorithm can better reveal the causes of freeway traffic crashes and identify crash precursors more accurately. In conclusion, the WOMDI-Apriori algorithm proposed in this research can be used as an effective approach for risk identification of freeway traffic crashes and can also provide theoretical guidance for future freeway traffic safety improvement.
    publisherASCE
    titleExploring Traffic Crash Occurrence Mechanism toward Cross-Area Freeways via an Improved Data Mining Approach
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Transportation Engineering, Part A: Systems
    identifier doi10.1061/JTEPBS.0000698
    journal fristpage04022052
    journal lastpage04022052-20
    page20
    treeJournal of Transportation Engineering, Part A: Systems:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian