YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Utilizing In Situ Ultraviolet-Visual Spectroscopy to Measure Nutrients and Sediment Concentrations in Stormwater Runoff

    Source: Journal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004::page 04022012
    Author:
    James J. Houle
    ,
    Daniel R. Macadam
    ,
    Thomas P. Ballestero
    ,
    Timothy A. Puls
    DOI: 10.1061/JSWBAY.0000994
    Publisher: ASCE
    Abstract: The capacity to collect meaningful data to estimate stormwater runoff water quality and subsequent system removal performance is key to selecting the appropriate solutions to protect water resources. Historically, grab sampling and automated composite sampling approaches have been used with training and comprehensive quality assurance protocols to produce defensible data. Innovative approaches use real-time ultraviolet-visual spectrometry (UV-Vis) can provide a powerful tool for understanding pollutant loading regionally. This study found that real-time UV-Vis sensing is a potential new tool for understanding stormwater effluent pollutant dynamics. Researchers compared data from real-time sensing using UV-Vis spectrometers to develop calibration curves for predicting pollutant concentrations in stormwater flows. Results from paired laboratory data and raw spectral data established calibrations for the stormwater runoff composition and support further investigations of the use of this technology to predict in situ concentrations of total Kjeldahl nitrogen (TKN), dissolved organic carbon (DOC), total phosphorus (TP), total suspended solids (TSS), total nitrogen (TN), and nitrate as nitrogen (NO3−N) resulted in robust models with R2 values in the range 0.99–0.93. Using partial least squares regression (PLSR) methods, the study demonstrated a strong correlation between concentrations generated by the raw absorbance data across the full available spectrum (220 to 730 nm). These results indicate the potential for developing specific stormwater calibration curves for pollutants of interest representative of stormwater runoff. Collectively, these results indicate that real-time UV-Vis spectrometers can redefine stormwater control monitoring by potentially delivering more accurate, more repeatable laboratory quality data instantaneously, with greater efficiency. Results from single grab samples of stormwater events are insufficient to develop estimates of storm event mean concentrations (EMCs). Commonly grab samples are taken during the rising limb of a hydrograph and used to characterize first flush phenomena. It is now known that first flush is a simple way to think about pollutant build-up and wash-off dynamics; however, it is a more theoretical concept because actual runoff concentrations for different pollutants vary due to many watershed and pollutant characteristics. Analyzing individual samples may be helpful to identify trends in loading rates of various constituents over a storm event and their changing intensities, but this significantly adds to laboratory costs and personnel hours to manage and process each event. Composite samples, on the other hand, offer affordable analytics and management but represent average pollutant concentrations that cannot be further discretized. These methods coupled with the difficulty of predicting dynamic storm variations in real time necessary to appropriately sample the storm leads to masked representation of what is happening in real time. The results of this paper introduce a real-time analytical method for stormwater chemistry assessment that bridges many of the contemporary sampling pitfalls. Regressions were within typical acceptable ranges allowed in stormwater chemistry analytical results from certified labs. These results encourage advancing the use of these technologies with greater efficiency and at a lower overall cost than conventionally available methodologies.
    • Download: (670.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Utilizing In Situ Ultraviolet-Visual Spectroscopy to Measure Nutrients and Sediment Concentrations in Stormwater Runoff

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286872
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorJames J. Houle
    contributor authorDaniel R. Macadam
    contributor authorThomas P. Ballestero
    contributor authorTimothy A. Puls
    date accessioned2022-08-18T12:35:32Z
    date available2022-08-18T12:35:32Z
    date issued2022/07/14
    identifier otherJSWBAY.0000994.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286872
    description abstractThe capacity to collect meaningful data to estimate stormwater runoff water quality and subsequent system removal performance is key to selecting the appropriate solutions to protect water resources. Historically, grab sampling and automated composite sampling approaches have been used with training and comprehensive quality assurance protocols to produce defensible data. Innovative approaches use real-time ultraviolet-visual spectrometry (UV-Vis) can provide a powerful tool for understanding pollutant loading regionally. This study found that real-time UV-Vis sensing is a potential new tool for understanding stormwater effluent pollutant dynamics. Researchers compared data from real-time sensing using UV-Vis spectrometers to develop calibration curves for predicting pollutant concentrations in stormwater flows. Results from paired laboratory data and raw spectral data established calibrations for the stormwater runoff composition and support further investigations of the use of this technology to predict in situ concentrations of total Kjeldahl nitrogen (TKN), dissolved organic carbon (DOC), total phosphorus (TP), total suspended solids (TSS), total nitrogen (TN), and nitrate as nitrogen (NO3−N) resulted in robust models with R2 values in the range 0.99–0.93. Using partial least squares regression (PLSR) methods, the study demonstrated a strong correlation between concentrations generated by the raw absorbance data across the full available spectrum (220 to 730 nm). These results indicate the potential for developing specific stormwater calibration curves for pollutants of interest representative of stormwater runoff. Collectively, these results indicate that real-time UV-Vis spectrometers can redefine stormwater control monitoring by potentially delivering more accurate, more repeatable laboratory quality data instantaneously, with greater efficiency. Results from single grab samples of stormwater events are insufficient to develop estimates of storm event mean concentrations (EMCs). Commonly grab samples are taken during the rising limb of a hydrograph and used to characterize first flush phenomena. It is now known that first flush is a simple way to think about pollutant build-up and wash-off dynamics; however, it is a more theoretical concept because actual runoff concentrations for different pollutants vary due to many watershed and pollutant characteristics. Analyzing individual samples may be helpful to identify trends in loading rates of various constituents over a storm event and their changing intensities, but this significantly adds to laboratory costs and personnel hours to manage and process each event. Composite samples, on the other hand, offer affordable analytics and management but represent average pollutant concentrations that cannot be further discretized. These methods coupled with the difficulty of predicting dynamic storm variations in real time necessary to appropriately sample the storm leads to masked representation of what is happening in real time. The results of this paper introduce a real-time analytical method for stormwater chemistry assessment that bridges many of the contemporary sampling pitfalls. Regressions were within typical acceptable ranges allowed in stormwater chemistry analytical results from certified labs. These results encourage advancing the use of these technologies with greater efficiency and at a lower overall cost than conventionally available methodologies.
    publisherASCE
    titleUtilizing In Situ Ultraviolet-Visual Spectroscopy to Measure Nutrients and Sediment Concentrations in Stormwater Runoff
    typeJournal Article
    journal volume8
    journal issue4
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000994
    journal fristpage04022012
    journal lastpage04022012-8
    page8
    treeJournal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian