YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Sustainable Water in the Built Environment
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Design and Climate on Bioretention Effectiveness for Watershed-Scale Hydrologic Benefits

    Source: Journal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004::page 04022011
    Author:
    Roderick W. Lammers
    ,
    Laura Miller
    ,
    Brian P. Bledsoe
    DOI: 10.1061/JSWBAY.0000993
    Publisher: ASCE
    Abstract: Bioretention areas are a common form of green stormwater infrastructure (GSI). There is significant research on the performance of individual bioretention cells, but the watershed-scale benefits of GSI are still unclear. Furthermore, differences in bioretention design and rainfall patterns make it difficult to compare results between studies. We used the Storm Water Management Model (SWMM) to assess the effects of bioretention size, soil infiltration rate, storm size, and climate on the watershed-scale performance of GSI. We first divided the contiguous US into 10 rainfall regions based on similarities in precipitation amount, intensity, and other storm characteristics. We then modeled the effects of bioretention areas in a single watershed under these different rainfall regimes. Bioretention areas did provide watershed-scale benefits, although performance declined as (1) bioretention areas became smaller, (2) soil infiltration rates decreased, and (3) precipitation depth increased. High-intensity rainfall was the primary cause of outflow from bioretention areas, although back-to-back storm events also caused outflow in some climates. There were some clear discrepancies between subbasin-scale and watershed-scale GSI performance. Generally, runoff volume reduction was greater when measured at the subbasin scale. Peak flow reduction, however, was greater at the watershed-scale, likely because bioretention areas changed the shape of subbasin runoff hydrographs, leading to watershed-scale peak flow reduction that was greater than the sum of the parts. We provide recommendations for design, management, and future research to help advance effective application of GSI for achieving watershed-scale hydrologic benefits.
    • Download: (2.502Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Design and Climate on Bioretention Effectiveness for Watershed-Scale Hydrologic Benefits

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286871
    Collections
    • Journal of Sustainable Water in the Built Environment

    Show full item record

    contributor authorRoderick W. Lammers
    contributor authorLaura Miller
    contributor authorBrian P. Bledsoe
    date accessioned2022-08-18T12:35:30Z
    date available2022-08-18T12:35:30Z
    date issued2022/07/14
    identifier otherJSWBAY.0000993.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286871
    description abstractBioretention areas are a common form of green stormwater infrastructure (GSI). There is significant research on the performance of individual bioretention cells, but the watershed-scale benefits of GSI are still unclear. Furthermore, differences in bioretention design and rainfall patterns make it difficult to compare results between studies. We used the Storm Water Management Model (SWMM) to assess the effects of bioretention size, soil infiltration rate, storm size, and climate on the watershed-scale performance of GSI. We first divided the contiguous US into 10 rainfall regions based on similarities in precipitation amount, intensity, and other storm characteristics. We then modeled the effects of bioretention areas in a single watershed under these different rainfall regimes. Bioretention areas did provide watershed-scale benefits, although performance declined as (1) bioretention areas became smaller, (2) soil infiltration rates decreased, and (3) precipitation depth increased. High-intensity rainfall was the primary cause of outflow from bioretention areas, although back-to-back storm events also caused outflow in some climates. There were some clear discrepancies between subbasin-scale and watershed-scale GSI performance. Generally, runoff volume reduction was greater when measured at the subbasin scale. Peak flow reduction, however, was greater at the watershed-scale, likely because bioretention areas changed the shape of subbasin runoff hydrographs, leading to watershed-scale peak flow reduction that was greater than the sum of the parts. We provide recommendations for design, management, and future research to help advance effective application of GSI for achieving watershed-scale hydrologic benefits.
    publisherASCE
    titleEffects of Design and Climate on Bioretention Effectiveness for Watershed-Scale Hydrologic Benefits
    typeJournal Article
    journal volume8
    journal issue4
    journal titleJournal of Sustainable Water in the Built Environment
    identifier doi10.1061/JSWBAY.0000993
    journal fristpage04022011
    journal lastpage04022011-16
    page16
    treeJournal of Sustainable Water in the Built Environment:;2022:;Volume ( 008 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian