YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Determination of Optimal Characteristic Point Positions for Modulus Back-Calculation of Layered Pavement Structure

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 003::page 04022045
    Author:
    Yue Hu
    ,
    Lijun Sun
    ,
    Yi Li
    DOI: 10.1061/JPEODX.0000393
    Publisher: ASCE
    Abstract: The modulus back-calculation of asphalt pavement layers using falling weight deflectometer (FWD) data has become one of the most important methods of evaluating pavement bearing capacity. Several back-calculation methods have been proposed to estimate material properties. A new modulus back-calculation method called the deflection basin regulation algorithm (DBRA) has emerged recently. This algorithm requires an inertial point and two characteristic points in a deflection basin for back-calculating the moduli of three-layer pavement. However, the existing characteristic point positions are determined based on the theoretically calculated deflections and have not been verified by measured deflections. In this research, the field-measured deflection basins of different pavement structures are used to determine the optimal characteristic point positions to improve the new back-calculation method. First, the optimal point positions are determined based on the effects of the positions on the back-calculation variability. Then the back-calculated results based on the optimal characteristic points are compared to the results obtained using the MODULUS program. Finally, the improved modulus back-calculation method is also verified by the deflections from two pavement structures at different temperatures and loading levels. It was found that the optimal characteristic point positions were located at distances of 0 and 60 cm from the load center. Both comparative analysis and independent verification prove that the determined optimal characteristic point positions work well for back-calculating the layer moduli of other pavement structures. The findings of this research may facilitate the application of the DBRA for modulus back-calculation.
    • Download: (2.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Determination of Optimal Characteristic Point Positions for Modulus Back-Calculation of Layered Pavement Structure

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286862
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorYue Hu
    contributor authorLijun Sun
    contributor authorYi Li
    date accessioned2022-08-18T12:35:10Z
    date available2022-08-18T12:35:10Z
    date issued2022/07/07
    identifier otherJPEODX.0000393.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286862
    description abstractThe modulus back-calculation of asphalt pavement layers using falling weight deflectometer (FWD) data has become one of the most important methods of evaluating pavement bearing capacity. Several back-calculation methods have been proposed to estimate material properties. A new modulus back-calculation method called the deflection basin regulation algorithm (DBRA) has emerged recently. This algorithm requires an inertial point and two characteristic points in a deflection basin for back-calculating the moduli of three-layer pavement. However, the existing characteristic point positions are determined based on the theoretically calculated deflections and have not been verified by measured deflections. In this research, the field-measured deflection basins of different pavement structures are used to determine the optimal characteristic point positions to improve the new back-calculation method. First, the optimal point positions are determined based on the effects of the positions on the back-calculation variability. Then the back-calculated results based on the optimal characteristic points are compared to the results obtained using the MODULUS program. Finally, the improved modulus back-calculation method is also verified by the deflections from two pavement structures at different temperatures and loading levels. It was found that the optimal characteristic point positions were located at distances of 0 and 60 cm from the load center. Both comparative analysis and independent verification prove that the determined optimal characteristic point positions work well for back-calculating the layer moduli of other pavement structures. The findings of this research may facilitate the application of the DBRA for modulus back-calculation.
    publisherASCE
    titleDetermination of Optimal Characteristic Point Positions for Modulus Back-Calculation of Layered Pavement Structure
    typeJournal Article
    journal volume148
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000393
    journal fristpage04022045
    journal lastpage04022045-10
    page10
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian