YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Bridge Weigh-in-Motion System Using Hybrid Strain–Acceleration Sensor Data

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 009::page 04022077
    Author:
    Ethan MacLeod
    ,
    Kaveh Arjomandi
    DOI: 10.1061/(ASCE)BE.1943-5592.0001924
    Publisher: ASCE
    Abstract: In this study, a novel acceleration-based vehicle identification method is employed within a hybrid bridge weigh-in-motion (BWIM) system in which the traditional strain-based BWIM system is augmented with an array of accelerometers. The implementation of such a system is discussed through a full-scale case study arterial highway bridge in the province of New Brunswick, Canada. The accuracy of the proposed vehicle identification method was studied in detail using an extensive set of field study data. To achieve this, a systematic evaluation of existing methods for velocity estimation and axle identification was conducted, evaluating the effects of vehicle direction, lane position, vehicle velocity, and vehicle configuration. The methods were compared based on the sensor signal characteristics, the velocity estimation techniques, axles detection methods, and the effects on gross vehicle weight (GVW) calculation. From this study, it was found that the proposed hybrid system resulted in more accurate velocity estimation, axle identification, and ultimately better GVW estimation.
    • Download: (3.456Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Bridge Weigh-in-Motion System Using Hybrid Strain–Acceleration Sensor Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286853
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorEthan MacLeod
    contributor authorKaveh Arjomandi
    date accessioned2022-08-18T12:34:55Z
    date available2022-08-18T12:34:55Z
    date issued2022/07/07
    identifier other%28ASCE%29BE.1943-5592.0001924.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286853
    description abstractIn this study, a novel acceleration-based vehicle identification method is employed within a hybrid bridge weigh-in-motion (BWIM) system in which the traditional strain-based BWIM system is augmented with an array of accelerometers. The implementation of such a system is discussed through a full-scale case study arterial highway bridge in the province of New Brunswick, Canada. The accuracy of the proposed vehicle identification method was studied in detail using an extensive set of field study data. To achieve this, a systematic evaluation of existing methods for velocity estimation and axle identification was conducted, evaluating the effects of vehicle direction, lane position, vehicle velocity, and vehicle configuration. The methods were compared based on the sensor signal characteristics, the velocity estimation techniques, axles detection methods, and the effects on gross vehicle weight (GVW) calculation. From this study, it was found that the proposed hybrid system resulted in more accurate velocity estimation, axle identification, and ultimately better GVW estimation.
    publisherASCE
    titleEnhanced Bridge Weigh-in-Motion System Using Hybrid Strain–Acceleration Sensor Data
    typeJournal Article
    journal volume27
    journal issue9
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001924
    journal fristpage04022077
    journal lastpage04022077-13
    page13
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian