YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Transportation Engineering, Part B: Pavements
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Field Assessment of Cold In-Place Recycled Asphalt Mixtures Using Accelerated Pavement Testing

    Source: Journal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 003::page 04022035
    Author:
    Ahmed Saidi
    ,
    Ayman Ali
    ,
    Yusuf Mehta
    ,
    Christopher J. Decarlo
    ,
    Mohamed Elshaer
    DOI: 10.1061/JPEODX.0000381
    Publisher: ASCE
    Abstract: The objective of this study was to assess the performance of full-scale cold in-place recycled (CIR) asphalt sections using accelerated pavement testing (APT). A balanced mix design approach was followed to optimize the binder contents of CIR mixtures, and these mixtures were subsequently used to construct three full-scale sections (7.6 by 3.7 m) at Rowan University’s Accelerated Pavement Testing Facility. Foamed asphalt was added in varied contents: 2%, 3%, and 4% by total mix weight. All CIR mixtures were prepared at a constant water content of 3%. Each full-scale section was instrumented with asphalt strain gauges, pressure cells, and thermocouples to evaluate the structural responses within each section. A heavy vehicle simulator (HVS) was utilized to apply accelerated loading on each full-scale pavement section. A truck tire was utilized to apply a 40-kN load while an aircraft tire was utilized to apply a 100-kN load. As accelerated loading was applied, a number of field tests and visual inspections were performed to determine (1) permanent deformation using a surface profiler, (2) the structural integrity using a heavy weight deflectometer before and after APT, and (3) cracking potential by assessing stress and strain responses. The results showed that the CIR section with 2% binder content presented the best rutting performance under truck loading and the highest rutting susceptibility under aircraft loading. Conversely, the CIR section with 3% binder content presented the highest cracking resistance under accelerated truck and aircraft loading.
    • Download: (1.709Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Field Assessment of Cold In-Place Recycled Asphalt Mixtures Using Accelerated Pavement Testing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286852
    Collections
    • Journal of Transportation Engineering, Part B: Pavements

    Show full item record

    contributor authorAhmed Saidi
    contributor authorAyman Ali
    contributor authorYusuf Mehta
    contributor authorChristopher J. Decarlo
    contributor authorMohamed Elshaer
    date accessioned2022-08-18T12:34:53Z
    date available2022-08-18T12:34:53Z
    date issued2022/04/26
    identifier otherJPEODX.0000381.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286852
    description abstractThe objective of this study was to assess the performance of full-scale cold in-place recycled (CIR) asphalt sections using accelerated pavement testing (APT). A balanced mix design approach was followed to optimize the binder contents of CIR mixtures, and these mixtures were subsequently used to construct three full-scale sections (7.6 by 3.7 m) at Rowan University’s Accelerated Pavement Testing Facility. Foamed asphalt was added in varied contents: 2%, 3%, and 4% by total mix weight. All CIR mixtures were prepared at a constant water content of 3%. Each full-scale section was instrumented with asphalt strain gauges, pressure cells, and thermocouples to evaluate the structural responses within each section. A heavy vehicle simulator (HVS) was utilized to apply accelerated loading on each full-scale pavement section. A truck tire was utilized to apply a 40-kN load while an aircraft tire was utilized to apply a 100-kN load. As accelerated loading was applied, a number of field tests and visual inspections were performed to determine (1) permanent deformation using a surface profiler, (2) the structural integrity using a heavy weight deflectometer before and after APT, and (3) cracking potential by assessing stress and strain responses. The results showed that the CIR section with 2% binder content presented the best rutting performance under truck loading and the highest rutting susceptibility under aircraft loading. Conversely, the CIR section with 3% binder content presented the highest cracking resistance under accelerated truck and aircraft loading.
    publisherASCE
    titleField Assessment of Cold In-Place Recycled Asphalt Mixtures Using Accelerated Pavement Testing
    typeJournal Article
    journal volume148
    journal issue3
    journal titleJournal of Transportation Engineering, Part B: Pavements
    identifier doi10.1061/JPEODX.0000381
    journal fristpage04022035
    journal lastpage04022035-13
    page13
    treeJournal of Transportation Engineering, Part B: Pavements:;2022:;Volume ( 148 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian