YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Waterway, Port, Coastal, and Ocean Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finding the Bed Shear Stress on a Rough Bed Using the Log Law

    Source: Journal of Waterway, Port, Coastal, and Ocean Engineering:;2022:;Volume ( 148 ):;issue: 004::page 04022008
    Author:
    Francis C. K. Ting
    ,
    Gunnar S. Kern
    DOI: 10.1061/(ASCE)WW.1943-5460.0000707
    Publisher: ASCE
    Abstract: The procedure commonly used to determine the friction velocity from a measured velocity profile in turbulent flow over a hydraulically rough bed is to fit the log law to the velocity profile and adjust the displacement height to obtain a best-fit line to as many data points as possible in the inner layer. In practice, the process can be subjective and produce large uncertainty in the bed shear stress estimates and/or inconsistent results for the equivalent roughness height. In oscillatory flows, a temporal variation in the equivalent grain roughness is unrealistic because the roughness height should remain constant if the boundary Reynolds number is sufficiently large. An alternative method is presented in this study, in which the equivalent grain roughness is held constant, and the displacement height is varied until the value of the von Kármán constant obtained from the best-fit line is equal to the universally accepted value of about 0.4. The iterative process converges rapidly and is easier to apply than the traditional method, which requires the displacement height to be found by trial and error. The method was tested in steady, shallow uniform flows over a fixed bed of fine gravel. The channel slope was varied, and the velocity profile was measured using the particle image velocimetry (PIV) technique. Good agreement was found between the bed shear stress estimates obtained using the new method and the values calculated from the measured flow depth and channel slope when the ks/d90 ratio was taken from the literature for small values of the h/d90 ratio, where h is the flow depth, ks is the equivalent roughness height, and d90 is the grain diameter with 90% of finer particles, therefore verifying that the new method produced results consistent with published data. The method was then applied to velocity measurements under a solitary wave to obtain the temporal variation of bed shear stress on a gravel bed near the point of incipient wave breaking.
    • Download: (1.919Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finding the Bed Shear Stress on a Rough Bed Using the Log Law

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286794
    Collections
    • Journal of Waterway, Port, Coastal, and Ocean Engineering

    Show full item record

    contributor authorFrancis C. K. Ting
    contributor authorGunnar S. Kern
    date accessioned2022-08-18T12:33:01Z
    date available2022-08-18T12:33:01Z
    date issued2022/04/29
    identifier other%28ASCE%29WW.1943-5460.0000707.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286794
    description abstractThe procedure commonly used to determine the friction velocity from a measured velocity profile in turbulent flow over a hydraulically rough bed is to fit the log law to the velocity profile and adjust the displacement height to obtain a best-fit line to as many data points as possible in the inner layer. In practice, the process can be subjective and produce large uncertainty in the bed shear stress estimates and/or inconsistent results for the equivalent roughness height. In oscillatory flows, a temporal variation in the equivalent grain roughness is unrealistic because the roughness height should remain constant if the boundary Reynolds number is sufficiently large. An alternative method is presented in this study, in which the equivalent grain roughness is held constant, and the displacement height is varied until the value of the von Kármán constant obtained from the best-fit line is equal to the universally accepted value of about 0.4. The iterative process converges rapidly and is easier to apply than the traditional method, which requires the displacement height to be found by trial and error. The method was tested in steady, shallow uniform flows over a fixed bed of fine gravel. The channel slope was varied, and the velocity profile was measured using the particle image velocimetry (PIV) technique. Good agreement was found between the bed shear stress estimates obtained using the new method and the values calculated from the measured flow depth and channel slope when the ks/d90 ratio was taken from the literature for small values of the h/d90 ratio, where h is the flow depth, ks is the equivalent roughness height, and d90 is the grain diameter with 90% of finer particles, therefore verifying that the new method produced results consistent with published data. The method was then applied to velocity measurements under a solitary wave to obtain the temporal variation of bed shear stress on a gravel bed near the point of incipient wave breaking.
    publisherASCE
    titleFinding the Bed Shear Stress on a Rough Bed Using the Log Law
    typeJournal Article
    journal volume148
    journal issue4
    journal titleJournal of Waterway, Port, Coastal, and Ocean Engineering
    identifier doi10.1061/(ASCE)WW.1943-5460.0000707
    journal fristpage04022008
    journal lastpage04022008-13
    page13
    treeJournal of Waterway, Port, Coastal, and Ocean Engineering:;2022:;Volume ( 148 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian