YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model Verification and Validation of a Cable-Stayed Bridge: Interval-Based Uncertainty Quantification of the Model Parameters

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008::page 04022066
    Author:
    Haifei Zhou
    ,
    Zhouhong Zong
    ,
    Jie Niu
    ,
    Lu Liu
    ,
    Dinan Lin
    DOI: 10.1061/(ASCE)BE.1943-5592.0001914
    Publisher: ASCE
    Abstract: In simulating engineering structures, the uncertainty quantification and propagation (UQ&P) of model parameters is of paramount importance for model verification and validation (V&V), the fidelity of which has been proven to have a prominent effect on structural safety assessment and decision making. In this study, the parametric uncertainties due to environmental periodicity were inversely quantified in form of intervals through a V&V framework based on the conjunction of interval response surface method (IRSM) and probability box (P-Box), which is adaptable and efficient for real bridge structures. The uncertainties of temperature were first quantified with P-Box, based on a year’s worth of data obtained from the structural health monitoring (SHM) system of a cable-stayed bridge. Following that, the uncertainties of structural frequencies were quantified through a correlation analysis between temperature and frequencies which were filtered by different techniques. The expressions of IRSM were constructed and verified, with frequencies calculated from them agreeing well with those calculated from the finite-element (FE) model simulation. Thereafter, the interval boundary values of the observed frequencies were obtained by searching the tails of the P-Box bounds, thus providing the target intervals for model validation. The parametric intervals were validated efficiently through a two-step calibration procedure based on monotonic analysis. The result shows that the validated model has a good predictive capacity and could serve as a high-fidelity model for further application, with the parametric uncertainties appropriately considered in the form of intervals.
    • Download: (2.572Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model Verification and Validation of a Cable-Stayed Bridge: Interval-Based Uncertainty Quantification of the Model Parameters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286776
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorHaifei Zhou
    contributor authorZhouhong Zong
    contributor authorJie Niu
    contributor authorLu Liu
    contributor authorDinan Lin
    date accessioned2022-08-18T12:32:23Z
    date available2022-08-18T12:32:23Z
    date issued2022/06/10
    identifier other%28ASCE%29BE.1943-5592.0001914.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286776
    description abstractIn simulating engineering structures, the uncertainty quantification and propagation (UQ&P) of model parameters is of paramount importance for model verification and validation (V&V), the fidelity of which has been proven to have a prominent effect on structural safety assessment and decision making. In this study, the parametric uncertainties due to environmental periodicity were inversely quantified in form of intervals through a V&V framework based on the conjunction of interval response surface method (IRSM) and probability box (P-Box), which is adaptable and efficient for real bridge structures. The uncertainties of temperature were first quantified with P-Box, based on a year’s worth of data obtained from the structural health monitoring (SHM) system of a cable-stayed bridge. Following that, the uncertainties of structural frequencies were quantified through a correlation analysis between temperature and frequencies which were filtered by different techniques. The expressions of IRSM were constructed and verified, with frequencies calculated from them agreeing well with those calculated from the finite-element (FE) model simulation. Thereafter, the interval boundary values of the observed frequencies were obtained by searching the tails of the P-Box bounds, thus providing the target intervals for model validation. The parametric intervals were validated efficiently through a two-step calibration procedure based on monotonic analysis. The result shows that the validated model has a good predictive capacity and could serve as a high-fidelity model for further application, with the parametric uncertainties appropriately considered in the form of intervals.
    publisherASCE
    titleModel Verification and Validation of a Cable-Stayed Bridge: Interval-Based Uncertainty Quantification of the Model Parameters
    typeJournal Article
    journal volume27
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001914
    journal fristpage04022066
    journal lastpage04022066-17
    page17
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian