YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Finite-Element Simulation of the Lateral Response of Posttensioned Base Rocking Steel Bridge Piers

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 009::page 04022141
    Author:
    Ahmad Rahmzadeh
    ,
    Robert Tremblay
    ,
    M. Shahria Alam
    DOI: 10.1061/(ASCE)ST.1943-541X.0003452
    Publisher: ASCE
    Abstract: This paper presents the results of a finite-element (FE) study on posttensioned (PT) rocking steel bridge piers, each composed of a circular tubular column, welded end plates, PT strands, and axially yielding steel energy dissipators (EDs), and corresponding chairs. The pier is configured so that it rocks at its base. Previously conducted experiments on five scaled rocking steel columns are summarized. Three-dimensional (3D) continuum FE models of the tested specimens are generated with the objective of verifying the capability of the modeling approach in the simulation of the local and global responses. Strain-controlled cyclic coupon tests were performed to quantify the kinematic and isotropic hardening material parameters. A simplified method is proposed to model the cyclic loss of prestressing because of wedge seating in a typical industry monostrand anchorage system. The FE procedure is then calibrated against the experimental data at the material, component, and global pier levels. A parametric study is conducted to examine the effects of key factors such as material model, P-Delta, base plate dimensions, column diameter-to-thickness and initial axial force ratios, ED chairs, and ED location on the lateral cyclic response. It is demonstrated that, for a given target drift, local buckling and the resulting residual lateral deformations of a rocking steel pier are a function of the diameter-to-thickness and initial axial force ratios of the column and the ED chairs. By the proper selection of these variables, a stable and robust self-centering response can be obtained with minimal damage to the bridge pier.
    • Download: (15.98Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Finite-Element Simulation of the Lateral Response of Posttensioned Base Rocking Steel Bridge Piers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286743
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAhmad Rahmzadeh
    contributor authorRobert Tremblay
    contributor authorM. Shahria Alam
    date accessioned2022-08-18T12:31:06Z
    date available2022-08-18T12:31:06Z
    date issued2022/07/13
    identifier other%28ASCE%29ST.1943-541X.0003452.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286743
    description abstractThis paper presents the results of a finite-element (FE) study on posttensioned (PT) rocking steel bridge piers, each composed of a circular tubular column, welded end plates, PT strands, and axially yielding steel energy dissipators (EDs), and corresponding chairs. The pier is configured so that it rocks at its base. Previously conducted experiments on five scaled rocking steel columns are summarized. Three-dimensional (3D) continuum FE models of the tested specimens are generated with the objective of verifying the capability of the modeling approach in the simulation of the local and global responses. Strain-controlled cyclic coupon tests were performed to quantify the kinematic and isotropic hardening material parameters. A simplified method is proposed to model the cyclic loss of prestressing because of wedge seating in a typical industry monostrand anchorage system. The FE procedure is then calibrated against the experimental data at the material, component, and global pier levels. A parametric study is conducted to examine the effects of key factors such as material model, P-Delta, base plate dimensions, column diameter-to-thickness and initial axial force ratios, ED chairs, and ED location on the lateral cyclic response. It is demonstrated that, for a given target drift, local buckling and the resulting residual lateral deformations of a rocking steel pier are a function of the diameter-to-thickness and initial axial force ratios of the column and the ED chairs. By the proper selection of these variables, a stable and robust self-centering response can be obtained with minimal damage to the bridge pier.
    publisherASCE
    titleFinite-Element Simulation of the Lateral Response of Posttensioned Base Rocking Steel Bridge Piers
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003452
    journal fristpage04022141
    journal lastpage04022141-18
    page18
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian