YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation on High-Mode Vortex-Induced Vibration of a Flexible Stay Cable in Smooth Flow

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008::page 04022068
    Author:
    Zhiwen Liu
    ,
    Shuqiong Li
    ,
    Lianghua Wang
    ,
    Banfu Yan
    ,
    Ruilin Zhang
    ,
    Zhengqing Chen
    DOI: 10.1061/(ASCE)BE.1943-5592.0001909
    Publisher: ASCE
    Abstract: With the increase in the main spans of cable-stayed bridges, the wind-induced vibration, especially the high-mode vortex-induced vibration (VIV) of the long stay cables has become a concern for many researchers. In this study, to investigate the high-mode VIVs of stay cables via wind tunnel tests, the mode order amplification factor (MOAF) of the stay cable was proposed to design the flexible stay cable model with a relatively large-scale ratio (λRe) of the Reynolds number (Re). Furthermore, the wind-induced vibration characteristics of the flexible stay cable model with a smooth surface for wind yaw angle (β) of 0° were investigated. In addition, the β effects on the wind-induced vibration characteristics of the stay cable were studied. Finally, double-helical fillets were applied to suppress the high-mode VIV responses of the flexible stay cable model for different β. The results showed that the flexible stay cable model that was designed by the proposed method of MOAF satisfied the similarity of the prototype stay cable and the damping ratios (ξ) of the first several modes of the flexible stay cable model were from approximately 0.021% to 0.064%. The stay cable exhibited five in-plane VIVs in the test wind velocity (V) range for β = 0°. Furthermore, the maximum amplitude of the displacement of the in-plane VIV of the flexible stay cable model decreased with the increase in the VIV mode order. The significant in-plane VIV responses of the stay cable were observed for β of 15°, 30°, −15°, −30°, and −45°, respectively, and the in-plane vibration acceleration responses were significantly larger than the out-of-plane vibration acceleration responses of the flexible stay cable model. The VIV responses of the stay cable could be effectively suppressed through the double-helical fillets with a diameter (d) of d = 0.10 D (where D = diameter of the stay cable) and pitch (P) of P = 12 D.
    • Download: (2.806Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation on High-Mode Vortex-Induced Vibration of a Flexible Stay Cable in Smooth Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286720
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorZhiwen Liu
    contributor authorShuqiong Li
    contributor authorLianghua Wang
    contributor authorBanfu Yan
    contributor authorRuilin Zhang
    contributor authorZhengqing Chen
    date accessioned2022-08-18T12:30:08Z
    date available2022-08-18T12:30:08Z
    date issued2022/06/15
    identifier other%28ASCE%29BE.1943-5592.0001909.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286720
    description abstractWith the increase in the main spans of cable-stayed bridges, the wind-induced vibration, especially the high-mode vortex-induced vibration (VIV) of the long stay cables has become a concern for many researchers. In this study, to investigate the high-mode VIVs of stay cables via wind tunnel tests, the mode order amplification factor (MOAF) of the stay cable was proposed to design the flexible stay cable model with a relatively large-scale ratio (λRe) of the Reynolds number (Re). Furthermore, the wind-induced vibration characteristics of the flexible stay cable model with a smooth surface for wind yaw angle (β) of 0° were investigated. In addition, the β effects on the wind-induced vibration characteristics of the stay cable were studied. Finally, double-helical fillets were applied to suppress the high-mode VIV responses of the flexible stay cable model for different β. The results showed that the flexible stay cable model that was designed by the proposed method of MOAF satisfied the similarity of the prototype stay cable and the damping ratios (ξ) of the first several modes of the flexible stay cable model were from approximately 0.021% to 0.064%. The stay cable exhibited five in-plane VIVs in the test wind velocity (V) range for β = 0°. Furthermore, the maximum amplitude of the displacement of the in-plane VIV of the flexible stay cable model decreased with the increase in the VIV mode order. The significant in-plane VIV responses of the stay cable were observed for β of 15°, 30°, −15°, −30°, and −45°, respectively, and the in-plane vibration acceleration responses were significantly larger than the out-of-plane vibration acceleration responses of the flexible stay cable model. The VIV responses of the stay cable could be effectively suppressed through the double-helical fillets with a diameter (d) of d = 0.10 D (where D = diameter of the stay cable) and pitch (P) of P = 12 D.
    publisherASCE
    titleExperimental Investigation on High-Mode Vortex-Induced Vibration of a Flexible Stay Cable in Smooth Flow
    typeJournal Article
    journal volume27
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001909
    journal fristpage04022068
    journal lastpage04022068-16
    page16
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian