YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Unified Truss-Arch Model for the Analysis of Bending-Shear Interaction in Reinforced Concrete Members

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022074
    Author:
    Ju Dong Lee
    ,
    John B. Mander
    DOI: 10.1061/(ASCE)ST.1943-541X.0003380
    Publisher: ASCE
    Abstract: The compatibility strut-and-tie method (C-STM) is a well-established nonlinear modeling tool to efficiently and accurately predict the overall load–deformation response of shear-critical RC members subjected to combined bending and shear. Such a high-performance tool, however, is computationally demanding. In this paper, a simplified limit analysis model based on C-STM is presented to predict the load-carrying capacity of RC beams. Amenable for hand methods of analysis, the approach is called the truss-arch model unified (TAMU). The TAMU approach accounts for the failure mechanism of the diagonal concrete strut that is softened because of the transverse tensile strain. Instead of providing overall force–deformation behavior, this model focuses on evaluating the ultimate load-carrying capacity by assuming the failure mechanism occurs when the principal diagonal strut reaches its softened strength in shear-critical beams. An explicit equation for the principal strain ratio is derived to evaluate the softened concrete strength and is used to develop formulas for the ultimate load-carrying capacity. The validity of the formulas is verified through a comparison of the predicted ultimate load-carrying capacities with maximum measured strengths from previous experimental results on large-scale physical tests representing bridge piers. The TAMU approach is then compared with other code-based strength analysis methods and shows better predictions of the maximum load-carrying capacity.
    • Download: (1.630Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Unified Truss-Arch Model for the Analysis of Bending-Shear Interaction in Reinforced Concrete Members

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286683
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorJu Dong Lee
    contributor authorJohn B. Mander
    date accessioned2022-08-18T12:28:46Z
    date available2022-08-18T12:28:46Z
    date issued2022/04/22
    identifier other%28ASCE%29ST.1943-541X.0003380.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286683
    description abstractThe compatibility strut-and-tie method (C-STM) is a well-established nonlinear modeling tool to efficiently and accurately predict the overall load–deformation response of shear-critical RC members subjected to combined bending and shear. Such a high-performance tool, however, is computationally demanding. In this paper, a simplified limit analysis model based on C-STM is presented to predict the load-carrying capacity of RC beams. Amenable for hand methods of analysis, the approach is called the truss-arch model unified (TAMU). The TAMU approach accounts for the failure mechanism of the diagonal concrete strut that is softened because of the transverse tensile strain. Instead of providing overall force–deformation behavior, this model focuses on evaluating the ultimate load-carrying capacity by assuming the failure mechanism occurs when the principal diagonal strut reaches its softened strength in shear-critical beams. An explicit equation for the principal strain ratio is derived to evaluate the softened concrete strength and is used to develop formulas for the ultimate load-carrying capacity. The validity of the formulas is verified through a comparison of the predicted ultimate load-carrying capacities with maximum measured strengths from previous experimental results on large-scale physical tests representing bridge piers. The TAMU approach is then compared with other code-based strength analysis methods and shows better predictions of the maximum load-carrying capacity.
    publisherASCE
    titleUnified Truss-Arch Model for the Analysis of Bending-Shear Interaction in Reinforced Concrete Members
    typeJournal Article
    journal volume148
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003380
    journal fristpage04022074
    journal lastpage04022074-12
    page12
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian