YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full-Scale Experimental Tests on Portal Frames Comprising Novel Cold-Formed Tapered Box Sections

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 009::page 04022133
    Author:
    Amir Shahmohammadi
    ,
    James B. P. Lim
    ,
    Charles Clifton
    ,
    Mohammad Hajsadeghi
    DOI: 10.1061/(ASCE)ST.1943-541X.0003379
    Publisher: ASCE
    Abstract: This paper proposes a novel, cold-formed portal framing system that comprises tapered box members formed from two cold-formed nested channel sections. The proposed method possesses structural and nonstructural advantages, such as improved seismic performance, enhanced building hygiene through bird and dust resistance, further corrosion resistance, and aesthetic improvement, as a result of fly bracing removal. The novelty of the box member lies in the tapering ability of the section, leading to material and paint savings. To examine the failure mechanisms and structural performance of the tapered box portal frame and to investigate the adequacy of the design method, two full-scale portal frames with an 18.16-m span were built and tested to failure under two common loading scenarios. The first was lateral cyclic loading into the inelastic range in conjunction with a vertically acting permanent load. The possibility of ductile plastic hinge formation in a severe earthquake was investigated using lateral cyclic testing. The second was vertical loading to failure. A novel economic loading setup was used to apply the gravity load on the frame. For the seismic design of this section type, slenderness limits are proposed for seismic applications along with the design ductility. A rotational stiffness value for a nominally pinned portal frame column base was also suggested in this study.
    • Download: (5.932Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full-Scale Experimental Tests on Portal Frames Comprising Novel Cold-Formed Tapered Box Sections

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286682
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorAmir Shahmohammadi
    contributor authorJames B. P. Lim
    contributor authorCharles Clifton
    contributor authorMohammad Hajsadeghi
    date accessioned2022-08-18T12:28:42Z
    date available2022-08-18T12:28:42Z
    date issued2022/07/08
    identifier other%28ASCE%29ST.1943-541X.0003379.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286682
    description abstractThis paper proposes a novel, cold-formed portal framing system that comprises tapered box members formed from two cold-formed nested channel sections. The proposed method possesses structural and nonstructural advantages, such as improved seismic performance, enhanced building hygiene through bird and dust resistance, further corrosion resistance, and aesthetic improvement, as a result of fly bracing removal. The novelty of the box member lies in the tapering ability of the section, leading to material and paint savings. To examine the failure mechanisms and structural performance of the tapered box portal frame and to investigate the adequacy of the design method, two full-scale portal frames with an 18.16-m span were built and tested to failure under two common loading scenarios. The first was lateral cyclic loading into the inelastic range in conjunction with a vertically acting permanent load. The possibility of ductile plastic hinge formation in a severe earthquake was investigated using lateral cyclic testing. The second was vertical loading to failure. A novel economic loading setup was used to apply the gravity load on the frame. For the seismic design of this section type, slenderness limits are proposed for seismic applications along with the design ductility. A rotational stiffness value for a nominally pinned portal frame column base was also suggested in this study.
    publisherASCE
    titleFull-Scale Experimental Tests on Portal Frames Comprising Novel Cold-Formed Tapered Box Sections
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003379
    journal fristpage04022133
    journal lastpage04022133-17
    page17
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian