YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Structural Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structural Redundancy, Robustness, and Disproportionate Collapse Analysis of Highway Bridge Superstructures

    Source: Journal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007::page 04022075
    Author:
    Graziano Fiorillo
    ,
    Michel Ghosn
    DOI: 10.1061/(ASCE)ST.1943-541X.0003369
    Publisher: ASCE
    Abstract: Performance-based design and system-level assessment methods are becoming the preferred approaches for evaluating the safety of structures. This is particularly important for highway bridges where, because of their exposure to long-term deterioration as well as sudden localized failures, the generally conservative traditional member-oriented approach does not necessarily lead to an accurate evaluation of the actual structural system’s safety levels nor, consequently, to the efficient allocation of the limited resources available for infrastructure management. The objective of this paper is to quantify the effect of damage size and location on bridge elements and how this affects the performance of the entire superstructure system. The paper also presents a simplified equation for estimating the structural robustness of typical highway girder bridge superstructures as a function of the damage type. A numerical example is presented to illustrate alternative approaches for how these concepts could be implemented during the design and safety assessment of highway bridges. In particular, the analysis showed that the occurrence of damage directly under the live load reduced the ultimate capacity of the system in the range of 70%–95%. This reduction was between 40% and 70% when the damage was located away from the loaded zone.
    • Download: (1.496Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structural Redundancy, Robustness, and Disproportionate Collapse Analysis of Highway Bridge Superstructures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286674
    Collections
    • Journal of Structural Engineering

    Show full item record

    contributor authorGraziano Fiorillo
    contributor authorMichel Ghosn
    date accessioned2022-08-18T12:28:10Z
    date available2022-08-18T12:28:10Z
    date issued2022/04/27
    identifier other%28ASCE%29ST.1943-541X.0003369.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286674
    description abstractPerformance-based design and system-level assessment methods are becoming the preferred approaches for evaluating the safety of structures. This is particularly important for highway bridges where, because of their exposure to long-term deterioration as well as sudden localized failures, the generally conservative traditional member-oriented approach does not necessarily lead to an accurate evaluation of the actual structural system’s safety levels nor, consequently, to the efficient allocation of the limited resources available for infrastructure management. The objective of this paper is to quantify the effect of damage size and location on bridge elements and how this affects the performance of the entire superstructure system. The paper also presents a simplified equation for estimating the structural robustness of typical highway girder bridge superstructures as a function of the damage type. A numerical example is presented to illustrate alternative approaches for how these concepts could be implemented during the design and safety assessment of highway bridges. In particular, the analysis showed that the occurrence of damage directly under the live load reduced the ultimate capacity of the system in the range of 70%–95%. This reduction was between 40% and 70% when the damage was located away from the loaded zone.
    publisherASCE
    titleStructural Redundancy, Robustness, and Disproportionate Collapse Analysis of Highway Bridge Superstructures
    typeJournal Article
    journal volume148
    journal issue7
    journal titleJournal of Structural Engineering
    identifier doi10.1061/(ASCE)ST.1943-541X.0003369
    journal fristpage04022075
    journal lastpage04022075-11
    page11
    treeJournal of Structural Engineering:;2022:;Volume ( 148 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian