YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Bridge Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reversed-Cyclic Response of Shear-Critical Rectangular Bridge Columns

    Source: Journal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008::page 04022059
    Author:
    Rico J. Massa
    ,
    William D. Cook
    ,
    Denis Mitchell
    DOI: 10.1061/(ASCE)BE.1943-5592.0001895
    Publisher: ASCE
    Abstract: The results of an experimental program comparing the responses of shear-critical rectangular columns tested under monotonic and reversed-cyclic loading are presented. These specimens had a constant compressive axial load and varying amounts of transverse reinforcement. Comparisons of the monotonic and reversed-cyclic loading responses are discussed. The reversed-cyclic peak shear strengths were about 11% and 17% lower, on average, than the monotonic peak strengths for the positive peak and the negative peak, respectively. Response predictions were made for columns from this experimental program, as well as for tests by other researchers, on rectangular shear-critical columns. Prediction methods included those based on current load and resistance factor design (LRFD) standards and seismic guidelines with and without an included strut, as well as nonlinear finite-element analysis. Methods based on official standards and guidelines gave similar conservative results for the shear strength. It was concluded that the addition of the horizontal components of inclined struts associated with the compressive axial loads to the sectional predictions improved the strength predictions by about 37% on average. In addition to providing accurate shear strength predictions, nonlinear finite-element analysis is capable of predicting the complete member response and accounts for the combined contributions of the concrete, transverse reinforcement, and inclined strut action from the applied axial compressive load.
    • Download: (3.456Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reversed-Cyclic Response of Shear-Critical Rectangular Bridge Columns

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286598
    Collections
    • Journal of Bridge Engineering

    Show full item record

    contributor authorRico J. Massa
    contributor authorWilliam D. Cook
    contributor authorDenis Mitchell
    date accessioned2022-08-18T12:25:17Z
    date available2022-08-18T12:25:17Z
    date issued2022/05/30
    identifier other%28ASCE%29BE.1943-5592.0001895.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286598
    description abstractThe results of an experimental program comparing the responses of shear-critical rectangular columns tested under monotonic and reversed-cyclic loading are presented. These specimens had a constant compressive axial load and varying amounts of transverse reinforcement. Comparisons of the monotonic and reversed-cyclic loading responses are discussed. The reversed-cyclic peak shear strengths were about 11% and 17% lower, on average, than the monotonic peak strengths for the positive peak and the negative peak, respectively. Response predictions were made for columns from this experimental program, as well as for tests by other researchers, on rectangular shear-critical columns. Prediction methods included those based on current load and resistance factor design (LRFD) standards and seismic guidelines with and without an included strut, as well as nonlinear finite-element analysis. Methods based on official standards and guidelines gave similar conservative results for the shear strength. It was concluded that the addition of the horizontal components of inclined struts associated with the compressive axial loads to the sectional predictions improved the strength predictions by about 37% on average. In addition to providing accurate shear strength predictions, nonlinear finite-element analysis is capable of predicting the complete member response and accounts for the combined contributions of the concrete, transverse reinforcement, and inclined strut action from the applied axial compressive load.
    publisherASCE
    titleReversed-Cyclic Response of Shear-Critical Rectangular Bridge Columns
    typeJournal Article
    journal volume27
    journal issue8
    journal titleJournal of Bridge Engineering
    identifier doi10.1061/(ASCE)BE.1943-5592.0001895
    journal fristpage04022059
    journal lastpage04022059-13
    page13
    treeJournal of Bridge Engineering:;2022:;Volume ( 027 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian