YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Alumina Nanofibers and Cellulose Nanocrystals on Durability and Self-Healing Capacity of Ultrahigh-Performance Fiber-Reinforced Concretes

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 008::page 04022154
    Author:
    Estefanía Cuenca
    ,
    María Criado
    ,
    Mercedes Giménez
    ,
    María Cruz Alonso
    ,
    Liberato Ferrara
    DOI: 10.1061/(ASCE)MT.1943-5533.0004375
    Publisher: ASCE
    Abstract: Ultrahigh-performance fiber-reinforced concrete (UHPFRC) features outstanding durability properties in uncracked state, although its composition based on very low water/cement ratios may result in a higher risk of early-age cracking due to increased shrinkage. This paper, based on research performed in the framework of the H2020 project ReSHEALience, studied aggressive chemical exposure conditions. A UHPFRC reference mix with 0.8% crystalline admixtures (CAs) and two other mixes, one containing 0.25% alumina nanofibers (ANFs) and one containing 0.15% cellulose nanocrystals (CNCs), both by weight of cement, were investigated. This study analyzed the synergy between CA and the nanoconstituents (ANF and CNC) on the physical, chemical, mechanical, and durability properties the and self-healing capacity of uncracked and cracked UHPFRC. The results showed that the presence of nanoadditives improves the mechanical properties independently of environmental curing conditions, refines the pore structure, favors cement hydration, and improves the intrinsic durability with a Cl and water transport reduction. Moreover, in the cracked state, nanoconstituents improved the self-sealing and self-healing capacity of specimens immersed in geothermal water.
    • Download: (4.958Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Alumina Nanofibers and Cellulose Nanocrystals on Durability and Self-Healing Capacity of Ultrahigh-Performance Fiber-Reinforced Concretes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286591
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorEstefanía Cuenca
    contributor authorMaría Criado
    contributor authorMercedes Giménez
    contributor authorMaría Cruz Alonso
    contributor authorLiberato Ferrara
    date accessioned2022-08-18T12:24:58Z
    date available2022-08-18T12:24:58Z
    date issued2022/05/17
    identifier other%28ASCE%29MT.1943-5533.0004375.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286591
    description abstractUltrahigh-performance fiber-reinforced concrete (UHPFRC) features outstanding durability properties in uncracked state, although its composition based on very low water/cement ratios may result in a higher risk of early-age cracking due to increased shrinkage. This paper, based on research performed in the framework of the H2020 project ReSHEALience, studied aggressive chemical exposure conditions. A UHPFRC reference mix with 0.8% crystalline admixtures (CAs) and two other mixes, one containing 0.25% alumina nanofibers (ANFs) and one containing 0.15% cellulose nanocrystals (CNCs), both by weight of cement, were investigated. This study analyzed the synergy between CA and the nanoconstituents (ANF and CNC) on the physical, chemical, mechanical, and durability properties the and self-healing capacity of uncracked and cracked UHPFRC. The results showed that the presence of nanoadditives improves the mechanical properties independently of environmental curing conditions, refines the pore structure, favors cement hydration, and improves the intrinsic durability with a Cl and water transport reduction. Moreover, in the cracked state, nanoconstituents improved the self-sealing and self-healing capacity of specimens immersed in geothermal water.
    publisherASCE
    titleEffects of Alumina Nanofibers and Cellulose Nanocrystals on Durability and Self-Healing Capacity of Ultrahigh-Performance Fiber-Reinforced Concretes
    typeJournal Article
    journal volume34
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004375
    journal fristpage04022154
    journal lastpage04022154-17
    page17
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian