YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Activator Type and Concentration, Water-to-Solid Ratio, and Time on the Flowability of Metakaolin-Based Geopolymer Pastes

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 009::page 04022205
    Author:
    Jessica de Gasperi
    ,
    Gabriela Dörr
    ,
    Eduarda F. Melchiors
    ,
    Márlon A. Longhi
    ,
    Paulo R. de Matos
    ,
    Erich D. Rodríguez
    DOI: 10.1061/(ASCE)MT.1943-5533.0004357
    Publisher: ASCE
    Abstract: The synthesis parameters, such as alkali activator type and content and water/binder (w/b) ratio, directly affect the dissolution and geopolymerization kinetics in geopolymers, playing a major role in its flow performance over time. However, the isolated effect of each parameter on the rheology of fresh metakaolin-based geopolymer is still not completely understood. This work assessed the effect of the alkali type (Na or K), concentration (15% or 20% by weight of the activating solution), and w/b ratio (from 0.70 to 0.80) on the fresh properties of metakaolin-based geopolymers. Minislump and Marsh cone tests with the use of image analysis and dynamic strain sweep rheometry were conducted at different testing times. The results showed that a high w/b ratio increased the initial flowability of paste (reduced the yield stress and Marsh cone time, and increased the minislump) as expected, whereas the flowability was reduced over time. Increasing the alkali concentration also increased the flowability of pastes regardless of the alkali type used. The most important finding is the corroboration that the type of alkali (Na+ or K+) was the parameter that had the greatest impact on the rheological behavior of pastes: mixes produced with potassium-based activator had higher flowability compared with those produced with sodium-based activator for the same concentration, w/b ratio, and testing time. The increased yield stress reduced workability, which might negatively affect its applicability and consequently the hardened performance of the material. Therefore, if high flowability is required, the use of potassium must be considered, either through its partial or complete presence in the alkali activator.
    • Download: (2.817Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Activator Type and Concentration, Water-to-Solid Ratio, and Time on the Flowability of Metakaolin-Based Geopolymer Pastes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286572
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorJessica de Gasperi
    contributor authorGabriela Dörr
    contributor authorEduarda F. Melchiors
    contributor authorMárlon A. Longhi
    contributor authorPaulo R. de Matos
    contributor authorErich D. Rodríguez
    date accessioned2022-08-18T12:24:25Z
    date available2022-08-18T12:24:25Z
    date issued2022/06/21
    identifier other%28ASCE%29MT.1943-5533.0004357.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286572
    description abstractThe synthesis parameters, such as alkali activator type and content and water/binder (w/b) ratio, directly affect the dissolution and geopolymerization kinetics in geopolymers, playing a major role in its flow performance over time. However, the isolated effect of each parameter on the rheology of fresh metakaolin-based geopolymer is still not completely understood. This work assessed the effect of the alkali type (Na or K), concentration (15% or 20% by weight of the activating solution), and w/b ratio (from 0.70 to 0.80) on the fresh properties of metakaolin-based geopolymers. Minislump and Marsh cone tests with the use of image analysis and dynamic strain sweep rheometry were conducted at different testing times. The results showed that a high w/b ratio increased the initial flowability of paste (reduced the yield stress and Marsh cone time, and increased the minislump) as expected, whereas the flowability was reduced over time. Increasing the alkali concentration also increased the flowability of pastes regardless of the alkali type used. The most important finding is the corroboration that the type of alkali (Na+ or K+) was the parameter that had the greatest impact on the rheological behavior of pastes: mixes produced with potassium-based activator had higher flowability compared with those produced with sodium-based activator for the same concentration, w/b ratio, and testing time. The increased yield stress reduced workability, which might negatively affect its applicability and consequently the hardened performance of the material. Therefore, if high flowability is required, the use of potassium must be considered, either through its partial or complete presence in the alkali activator.
    publisherASCE
    titleEffect of Activator Type and Concentration, Water-to-Solid Ratio, and Time on the Flowability of Metakaolin-Based Geopolymer Pastes
    typeJournal Article
    journal volume34
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004357
    journal fristpage04022205
    journal lastpage04022205-13
    page13
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian