YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Working Performance and Composition Optimization of Low-Viscosity Epoxy Grouting Material for Cast-in-Place Cement Concrete

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 009::page 04022196
    Author:
    Chaohui Wang
    ,
    Liangliang Niu
    ,
    Haijiao Zhang
    ,
    Xudang Xiao
    ,
    Zhisheng Liu
    DOI: 10.1061/(ASCE)MT.1943-5533.0004355
    Publisher: ASCE
    Abstract: To repair microcracks in cast-in-place concrete bridge decks and improve the quality of bridge deck pavement, low-viscosity epoxy grouting material was prepared. The effects of different diluent types and dosages on the viscosity, operable time, and mechanical properties of the epoxy grouting materials were compared. The variation of the bond strength, tensile strength, and engineering strain of the grouting material with the dosage of the active diluent (AD-I, AD-II, and AD-III) was explored. Based on the reconstruction data envelopment analysis (DEA) method, a model for optimizing the composition of the grouting material was established. The results show that the initial viscosity and 30-min average viscosity of the epoxy grouting material initially decreased rapidly, then declined more slowly. When the dosage of active diluent was 15%, the operable time increased more than 150% compared with the epoxy grouting material without active diluent. The tensile strength and engineering strain of the epoxy grouting material at low temperature first increased slightly and then decreased rapidly. The tensile strength at room temperature and high temperature was basically the same as that at low temperature, while the engineering strain increased overall. The bonding strength of the epoxy grouting material increased slightly first and then decreased rapidly with the addition of AD-I and AD-II active diluent and decreased rapidly with the increase of AD-III active diluent. Through reconstruction and optimization of the DEA method, the final optimal epoxy grouting material formulations were found to be AD-I-15, AD-II-15, AD-III-10, and the dosage of AD-I, AD-II, and AD-III active diluent accounts for 15%, 15%, and 10% of the epoxy resin, respectively. The low-viscosity epoxy grouting material prepared in this study had excellent groutability and mechanical properties, which can provide an effective guarantee for the repair of microcracks in cast-in-place concrete.
    • Download: (2.338Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Working Performance and Composition Optimization of Low-Viscosity Epoxy Grouting Material for Cast-in-Place Cement Concrete

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286570
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorChaohui Wang
    contributor authorLiangliang Niu
    contributor authorHaijiao Zhang
    contributor authorXudang Xiao
    contributor authorZhisheng Liu
    date accessioned2022-08-18T12:24:23Z
    date available2022-08-18T12:24:23Z
    date issued2022/06/16
    identifier other%28ASCE%29MT.1943-5533.0004355.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286570
    description abstractTo repair microcracks in cast-in-place concrete bridge decks and improve the quality of bridge deck pavement, low-viscosity epoxy grouting material was prepared. The effects of different diluent types and dosages on the viscosity, operable time, and mechanical properties of the epoxy grouting materials were compared. The variation of the bond strength, tensile strength, and engineering strain of the grouting material with the dosage of the active diluent (AD-I, AD-II, and AD-III) was explored. Based on the reconstruction data envelopment analysis (DEA) method, a model for optimizing the composition of the grouting material was established. The results show that the initial viscosity and 30-min average viscosity of the epoxy grouting material initially decreased rapidly, then declined more slowly. When the dosage of active diluent was 15%, the operable time increased more than 150% compared with the epoxy grouting material without active diluent. The tensile strength and engineering strain of the epoxy grouting material at low temperature first increased slightly and then decreased rapidly. The tensile strength at room temperature and high temperature was basically the same as that at low temperature, while the engineering strain increased overall. The bonding strength of the epoxy grouting material increased slightly first and then decreased rapidly with the addition of AD-I and AD-II active diluent and decreased rapidly with the increase of AD-III active diluent. Through reconstruction and optimization of the DEA method, the final optimal epoxy grouting material formulations were found to be AD-I-15, AD-II-15, AD-III-10, and the dosage of AD-I, AD-II, and AD-III active diluent accounts for 15%, 15%, and 10% of the epoxy resin, respectively. The low-viscosity epoxy grouting material prepared in this study had excellent groutability and mechanical properties, which can provide an effective guarantee for the repair of microcracks in cast-in-place concrete.
    publisherASCE
    titleWorking Performance and Composition Optimization of Low-Viscosity Epoxy Grouting Material for Cast-in-Place Cement Concrete
    typeJournal Article
    journal volume34
    journal issue9
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004355
    journal fristpage04022196
    journal lastpage04022196-11
    page11
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian