YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Modeling the Viscosity Behavior of Crumb Rubber–Modified Binder Using Response Surface Methodology

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 008::page 04022168
    Author:
    Reza Azadedel
    ,
    Nader Solatifar
    DOI: 10.1061/(ASCE)MT.1943-5533.0004310
    Publisher: ASCE
    Abstract: Crumb rubber is one of the waste materials used to improve the behavior of binders. The use of this recycled rubber as a common cheap additive can also help in preserving the environment. Modifying the binder with this additive can consequently increase its viscosity. The primary aim of this research is to identify the factors that influence the viscosity of the crumb rubber–modified binders and determine their optimal values by modeling the viscosity of the samples. To this end, central composite design (CCD) method of response surface methodology (RSM) was utilized to evaluate the influence of the selected factors including mixing temperature, time, speed, and blending content of the modifier on the viscosity of the crumb rubber–modified binders, which was identified as the main response. Based on the CCD method, 30 samples were prepared, and a rotational viscosity (RV) test was conducted on them. The results showed that crumb rubber content and mixing temperature are more effective than the other factors and their interactions. To yield the minimum viscosity, the optimal values for the influential factors were 4% for the blending content of the crumb rubber, 160°C for the mixing temperature, 57 Hz for the mixing speed, and 35 min for the mixing time. In this optimal case, the results of Fourier-transform infrared (FTIR) spectrum analysis showed that adding crumb rubber to the neat binder does not create a new factor group in the binder spectrum.
    • Download: (3.522Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Modeling the Viscosity Behavior of Crumb Rubber–Modified Binder Using Response Surface Methodology

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286524
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorReza Azadedel
    contributor authorNader Solatifar
    date accessioned2022-08-18T12:22:51Z
    date available2022-08-18T12:22:51Z
    date issued2022/05/23
    identifier other%28ASCE%29MT.1943-5533.0004310.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286524
    description abstractCrumb rubber is one of the waste materials used to improve the behavior of binders. The use of this recycled rubber as a common cheap additive can also help in preserving the environment. Modifying the binder with this additive can consequently increase its viscosity. The primary aim of this research is to identify the factors that influence the viscosity of the crumb rubber–modified binders and determine their optimal values by modeling the viscosity of the samples. To this end, central composite design (CCD) method of response surface methodology (RSM) was utilized to evaluate the influence of the selected factors including mixing temperature, time, speed, and blending content of the modifier on the viscosity of the crumb rubber–modified binders, which was identified as the main response. Based on the CCD method, 30 samples were prepared, and a rotational viscosity (RV) test was conducted on them. The results showed that crumb rubber content and mixing temperature are more effective than the other factors and their interactions. To yield the minimum viscosity, the optimal values for the influential factors were 4% for the blending content of the crumb rubber, 160°C for the mixing temperature, 57 Hz for the mixing speed, and 35 min for the mixing time. In this optimal case, the results of Fourier-transform infrared (FTIR) spectrum analysis showed that adding crumb rubber to the neat binder does not create a new factor group in the binder spectrum.
    publisherASCE
    titleModeling the Viscosity Behavior of Crumb Rubber–Modified Binder Using Response Surface Methodology
    typeJournal Article
    journal volume34
    journal issue8
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004310
    journal fristpage04022168
    journal lastpage04022168-13
    page13
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian