YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Shear Capacity of Ultrahigh-Performance Concrete with Monolithic Interface and Wet-Joint Interface

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007::page 04022153
    Author:
    Zheng Feng
    ,
    Chuanxi Li
    ,
    Rensheng Pan
    ,
    Doo-Yeol Yoo
    ,
    Jun He
    ,
    Lu Ke
    DOI: 10.1061/(ASCE)MT.1943-5533.0004297
    Publisher: ASCE
    Abstract: A total of 65 Z-shaped ultrahigh-performance concrete (UHPC) specimens with monolithic interfaces, flat-wet-joint interfaces (roughened with a high-pressure water jet), and keyed-wet-joint interfaces were tested under the classical push-off test setup. The influences of steel fiber properties, keyed-joint shapes, and confining stress on the shear strength of the UHPC specimens are discussed. A high-precision equation for predicting the shear capacity of the UHPC specimens with monolithic interfaces, flat-wet-joint interfaces, and keyed-wet-joint interfaces is proposed and verified by experimental results. The test results indicate that steel fibers had a significantly positive effect on improving the shear strength of the UHPC specimens. For the flat-wet-joint specimens, the shear strength increased approximately linearly as the fiber content increased. Using long and hooked-end fibers improved its shear strength. For the keyed-wet-joint specimens, the shear strength improved almost linearly with confining stress, whereas the keyed-joint shape had little influence. The strength reduction factor (the ratio of the ultimate shear strength of the flat-wet-joint interface to that of the monolithic interface) increased with the fiber volume fraction. A relationship between the strength reduction factor and the fiber characteristic parameter is proposed.
    • Download: (8.937Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Shear Capacity of Ultrahigh-Performance Concrete with Monolithic Interface and Wet-Joint Interface

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286510
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorZheng Feng
    contributor authorChuanxi Li
    contributor authorRensheng Pan
    contributor authorDoo-Yeol Yoo
    contributor authorJun He
    contributor authorLu Ke
    date accessioned2022-08-18T12:22:24Z
    date available2022-08-18T12:22:24Z
    date issued2022/04/28
    identifier other%28ASCE%29MT.1943-5533.0004297.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286510
    description abstractA total of 65 Z-shaped ultrahigh-performance concrete (UHPC) specimens with monolithic interfaces, flat-wet-joint interfaces (roughened with a high-pressure water jet), and keyed-wet-joint interfaces were tested under the classical push-off test setup. The influences of steel fiber properties, keyed-joint shapes, and confining stress on the shear strength of the UHPC specimens are discussed. A high-precision equation for predicting the shear capacity of the UHPC specimens with monolithic interfaces, flat-wet-joint interfaces, and keyed-wet-joint interfaces is proposed and verified by experimental results. The test results indicate that steel fibers had a significantly positive effect on improving the shear strength of the UHPC specimens. For the flat-wet-joint specimens, the shear strength increased approximately linearly as the fiber content increased. Using long and hooked-end fibers improved its shear strength. For the keyed-wet-joint specimens, the shear strength improved almost linearly with confining stress, whereas the keyed-joint shape had little influence. The strength reduction factor (the ratio of the ultimate shear strength of the flat-wet-joint interface to that of the monolithic interface) increased with the fiber volume fraction. A relationship between the strength reduction factor and the fiber characteristic parameter is proposed.
    publisherASCE
    titleShear Capacity of Ultrahigh-Performance Concrete with Monolithic Interface and Wet-Joint Interface
    typeJournal Article
    journal volume34
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004297
    journal fristpage04022153
    journal lastpage04022153-17
    page17
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian