YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Materials in Civil Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Modeling of Elastic Modulus across Micro-Meso-Macroscales Based on Grid-Nanoindentation Test for Cementitious Materials

    Source: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007::page 04022129
    Author:
    Xiaowen Chen
    ,
    Tianshi Sun
    ,
    Tianci Sun
    ,
    Huazhe Yin
    ,
    Dongwei Hou
    DOI: 10.1061/(ASCE)MT.1943-5533.0004267
    Publisher: ASCE
    Abstract: Estimation of multiscale elastic parameters is of significance for precise design of cementitious material performances, which depends on the materials’ mineral compositions and microstructures. Nanoindentation technology coupling with statistical analysis is an advanced method to probe the mechanical properties of mineral phases, which bridges the equivalent performance of block cementitious materials by upscaling and the microstructures of minerals by downscaling. In this study, grid nanoindentations and mercury intrusion porosimetry (MIP) were performed on cement paste samples with typical water/cement ratios to obtain the elastic modulus of microscopic phases and porosity. Then, upscaling calculation of equivalent elastic modulus was carried out by homogenization methods including dilute method, Mori-Tanaka (M-T) method, self-consistent method, and interaction direct derivation (IDD) method. Comparing calculations with macrotests of elastic modulus, the results are in good agreement with experiment results after considering the effects of capillary pores, especially by the self-consistent method and IDD method. Furtherly, regression analysis using the self-consistent method was employed to obtain the intrinsic elastic modulus of calcium silicate hydrate (CSH) monomers and packing density of CSH clusters, which is in agreement with reported simulation results by molecular dynamics. This work established the relationships quantitatively among gene minerals with special nanostructures, microstructures of cement pastes and macroelastic performances of block cement materials by a multiscale calculation framework across micro-meso-macroscales, offering a foundation for further multiscale design of high-performance construction materials in civil engineering.
    • Download: (1.264Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Modeling of Elastic Modulus across Micro-Meso-Macroscales Based on Grid-Nanoindentation Test for Cementitious Materials

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286488
    Collections
    • Journal of Materials in Civil Engineering

    Show full item record

    contributor authorXiaowen Chen
    contributor authorTianshi Sun
    contributor authorTianci Sun
    contributor authorHuazhe Yin
    contributor authorDongwei Hou
    date accessioned2022-08-18T12:21:38Z
    date available2022-08-18T12:21:38Z
    date issued2022/04/22
    identifier other%28ASCE%29MT.1943-5533.0004267.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286488
    description abstractEstimation of multiscale elastic parameters is of significance for precise design of cementitious material performances, which depends on the materials’ mineral compositions and microstructures. Nanoindentation technology coupling with statistical analysis is an advanced method to probe the mechanical properties of mineral phases, which bridges the equivalent performance of block cementitious materials by upscaling and the microstructures of minerals by downscaling. In this study, grid nanoindentations and mercury intrusion porosimetry (MIP) were performed on cement paste samples with typical water/cement ratios to obtain the elastic modulus of microscopic phases and porosity. Then, upscaling calculation of equivalent elastic modulus was carried out by homogenization methods including dilute method, Mori-Tanaka (M-T) method, self-consistent method, and interaction direct derivation (IDD) method. Comparing calculations with macrotests of elastic modulus, the results are in good agreement with experiment results after considering the effects of capillary pores, especially by the self-consistent method and IDD method. Furtherly, regression analysis using the self-consistent method was employed to obtain the intrinsic elastic modulus of calcium silicate hydrate (CSH) monomers and packing density of CSH clusters, which is in agreement with reported simulation results by molecular dynamics. This work established the relationships quantitatively among gene minerals with special nanostructures, microstructures of cement pastes and macroelastic performances of block cement materials by a multiscale calculation framework across micro-meso-macroscales, offering a foundation for further multiscale design of high-performance construction materials in civil engineering.
    publisherASCE
    titleMultiscale Modeling of Elastic Modulus across Micro-Meso-Macroscales Based on Grid-Nanoindentation Test for Cementitious Materials
    typeJournal Article
    journal volume34
    journal issue7
    journal titleJournal of Materials in Civil Engineering
    identifier doi10.1061/(ASCE)MT.1943-5533.0004267
    journal fristpage04022129
    journal lastpage04022129-10
    page10
    treeJournal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian