Electromagnetic Wave Absorption Properties and Mechanism of Graphene/Ni0.4Zn0.6Fe2O4 Cement CompositesSource: Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007::page 04022142DOI: 10.1061/(ASCE)MT.1943-5533.0004264Publisher: ASCE
Abstract: Electromagnetic waves (EMWs) absorption cement composites were widely demanded in urban construction in the near future with increasingly serious electromagnetic pollution in rapid development and application of electronic communication technology. To fully utilize the influence of graphene nanoplates (GNPs) and Ni0.4Zn0.6Fe2O4 on EMWs absorption properties of cement composites, various dosages of dispersed GNPs, Ni0.4Zn0.6Fe2O4, and hybrid mixtures were incorporated in cement, and the electromagnetic reflectivity loss, electromagnetic parameter were tested and discussed in the frequency range of 2–18 GHz. Also, the effects of GNPs and Ni0.4Zn0.6Fe2O4 on complex permittivity, complex permeability of cement composites were analyzed for further mechanism analysis combined with XRD, MIP, and SEM micrographs. The results showed that 1.0% GNPs and 30% Ni0.4Zn0.6Fe2O4 were the optimal dosages in cement composites, which could absorb more than 80% incident EMWs energy in 8–18 GHz. Furthermore, the GNPs/Ni0.4Zn0.6Fe2O4 (1%, 30%) cement composites exhibit lower EMWs reflectivity loss compared to GNPs or Ni0.4Zn0.6Fe2O4 added individually, and the effective absorption frequency width (lower than −10 dB) was 5.4 GHz, of which more than 90% EMWs energy was translated to thermal energy and absorbed by the matrix, reaching similar EMWs absorption effect of absorption coating materials. Essentially, the imaginary part of complex permittivity and the real part and imaginary part of complex permeability of cement composites could be improved conspicuously when GNPs/Ni0.4Zn0.6Fe2O4 was incorporated, indicating higher dielectric loss angle tangent and magnetic loss angle tangent of cement composites achieved. Thus, the impedance matching, dielectric loss, and the magnetic loss of cement composites under incident EMWs increased.
|
Collections
Show full item record
contributor author | Shuang Deng | |
contributor author | Baomin Wang | |
contributor author | Hongmei Ai | |
contributor author | Junnan Han | |
date accessioned | 2022-08-18T12:21:27Z | |
date available | 2022-08-18T12:21:27Z | |
date issued | 2022/04/25 | |
identifier other | %28ASCE%29MT.1943-5533.0004264.pdf | |
identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4286484 | |
description abstract | Electromagnetic waves (EMWs) absorption cement composites were widely demanded in urban construction in the near future with increasingly serious electromagnetic pollution in rapid development and application of electronic communication technology. To fully utilize the influence of graphene nanoplates (GNPs) and Ni0.4Zn0.6Fe2O4 on EMWs absorption properties of cement composites, various dosages of dispersed GNPs, Ni0.4Zn0.6Fe2O4, and hybrid mixtures were incorporated in cement, and the electromagnetic reflectivity loss, electromagnetic parameter were tested and discussed in the frequency range of 2–18 GHz. Also, the effects of GNPs and Ni0.4Zn0.6Fe2O4 on complex permittivity, complex permeability of cement composites were analyzed for further mechanism analysis combined with XRD, MIP, and SEM micrographs. The results showed that 1.0% GNPs and 30% Ni0.4Zn0.6Fe2O4 were the optimal dosages in cement composites, which could absorb more than 80% incident EMWs energy in 8–18 GHz. Furthermore, the GNPs/Ni0.4Zn0.6Fe2O4 (1%, 30%) cement composites exhibit lower EMWs reflectivity loss compared to GNPs or Ni0.4Zn0.6Fe2O4 added individually, and the effective absorption frequency width (lower than −10 dB) was 5.4 GHz, of which more than 90% EMWs energy was translated to thermal energy and absorbed by the matrix, reaching similar EMWs absorption effect of absorption coating materials. Essentially, the imaginary part of complex permittivity and the real part and imaginary part of complex permeability of cement composites could be improved conspicuously when GNPs/Ni0.4Zn0.6Fe2O4 was incorporated, indicating higher dielectric loss angle tangent and magnetic loss angle tangent of cement composites achieved. Thus, the impedance matching, dielectric loss, and the magnetic loss of cement composites under incident EMWs increased. | |
publisher | ASCE | |
title | Electromagnetic Wave Absorption Properties and Mechanism of Graphene/Ni0.4Zn0.6Fe2O4 Cement Composites | |
type | Journal Article | |
journal volume | 34 | |
journal issue | 7 | |
journal title | Journal of Materials in Civil Engineering | |
identifier doi | 10.1061/(ASCE)MT.1943-5533.0004264 | |
journal fristpage | 04022142 | |
journal lastpage | 04022142-12 | |
page | 12 | |
tree | Journal of Materials in Civil Engineering:;2022:;Volume ( 034 ):;issue: 007 | |
contenttype | Fulltext |