YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Transverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump

    Source: Journal of Irrigation and Drainage Engineering:;2022:;Volume ( 148 ):;issue: 010::page 04022031
    Author:
    Rongcai Tang
    ,
    Jingmei Zhang
    ,
    Ruidi Bai
    ,
    Hang Wang
    DOI: 10.1061/(ASCE)IR.1943-4774.0001697
    Publisher: ASCE
    Abstract: Flow field characterization in high-aerated flows often involves flow imaging techniques through transparent sidewalls, and the results may be subject to sidewall effects and thus differ from the central flow behaviors. This paper contributes an experimental investigation of the sidewall effects on the air-water flow distributions in quasi-two-dimensional hydraulic jumps in a rectangular flume. The tested hydraulic jumps are characterized by preaerated approach flows and large inflow Froude numbers from 10.6 to 15.1. The air-water flow properties are measured intrusively along the centerline, sidewall, and transverse cross sections to provide a three-dimensional view of the aerated flow structure. Substantial redistribution of the bubbly flow is observed due to the presence of lateral aeration boundary layers in the high-speed jet-shear region, compared to the less affected free-surface roller. The magnitude difference between the central and lateral air-water flow properties is more distinct in terms of bubble count rate and less evident for void fraction and interfacial velocity, while the affected area is broader for void fraction distributions. The results suggest a concentration of high-speed jet flow in the central bottom flow column, where the jet layer is thicker, the recirculation roller is smaller, and the proportion of small-size bubbles is higher. The width of the central flow region free of the sidewall effects is approximately 60% to 80% of the flume width in the present facility, narrower on the bottom, and broader at the free surface. The findings demonstrate that the transverse variation of air-water flow and the difference between the central and lateral flow fields should not be ignored for the high-speed flow regions of hydraulic jump. A correct assessment of the sidewall effects is essential for interpreting imaging-based measurement of highly-aerated flow.
    • Download: (1.767Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Transverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286424
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorRongcai Tang
    contributor authorJingmei Zhang
    contributor authorRuidi Bai
    contributor authorHang Wang
    date accessioned2022-08-18T12:19:23Z
    date available2022-08-18T12:19:23Z
    date issued2022/07/18
    identifier other%28ASCE%29IR.1943-4774.0001697.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286424
    description abstractFlow field characterization in high-aerated flows often involves flow imaging techniques through transparent sidewalls, and the results may be subject to sidewall effects and thus differ from the central flow behaviors. This paper contributes an experimental investigation of the sidewall effects on the air-water flow distributions in quasi-two-dimensional hydraulic jumps in a rectangular flume. The tested hydraulic jumps are characterized by preaerated approach flows and large inflow Froude numbers from 10.6 to 15.1. The air-water flow properties are measured intrusively along the centerline, sidewall, and transverse cross sections to provide a three-dimensional view of the aerated flow structure. Substantial redistribution of the bubbly flow is observed due to the presence of lateral aeration boundary layers in the high-speed jet-shear region, compared to the less affected free-surface roller. The magnitude difference between the central and lateral air-water flow properties is more distinct in terms of bubble count rate and less evident for void fraction and interfacial velocity, while the affected area is broader for void fraction distributions. The results suggest a concentration of high-speed jet flow in the central bottom flow column, where the jet layer is thicker, the recirculation roller is smaller, and the proportion of small-size bubbles is higher. The width of the central flow region free of the sidewall effects is approximately 60% to 80% of the flume width in the present facility, narrower on the bottom, and broader at the free surface. The findings demonstrate that the transverse variation of air-water flow and the difference between the central and lateral flow fields should not be ignored for the high-speed flow regions of hydraulic jump. A correct assessment of the sidewall effects is essential for interpreting imaging-based measurement of highly-aerated flow.
    publisherASCE
    titleTransverse Nonuniformity of Air–Water Flow and Lateral Wall Effects in Quasi-Two-Dimensional Hydraulic Jump
    typeJournal Article
    journal volume148
    journal issue10
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0001697
    journal fristpage04022031
    journal lastpage04022031-16
    page16
    treeJournal of Irrigation and Drainage Engineering:;2022:;Volume ( 148 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian