YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Green Remediation for Lead-Contaminated Soil Using Carbon Dioxide Injection

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 004::page 04022025
    Author:
    Hamed Abdeh Keykha
    ,
    Alireza Ardakani
    ,
    Hamid Talebi
    ,
    Hadi Mohamadzadeh Romiani
    DOI: 10.1061/(ASCE)HZ.2153-5515.0000712
    Publisher: ASCE
    Abstract: Numerous studies have been conducted to remove lead (Pb) from the soil. This study proposed a novel approach that used carbon dioxide (CO2) as a cleaning reagent for the remediation and immobilization of Pb contamination in sandy soil. First, contaminated soil with 5,000 ppm lead nitrate (Pb(NO3)2) was prepared in a setup box. Then, sodium hydroxide solution (NaOH) (2 M) was injected into the soil to react and create sodium tetrahydroxyplumbate (II) [Na2[Pb(OH)4]]. The CO2 gas was then introduced into the contaminated soil to react, which resulted in the formation of lead carbonate (PbCO3) minerals. The soil samples were collected from across the setup box at different distances and depths from the injection tube after various times. PbCO3 crystals were identified as cerussite by scanning electron microscope (SEM) and X-ray diffraction (XRD) investigations. Cerussite had poorer solubility under acidic conditions (e.g., 0.5% at pH 7 and 6.25% at pH 5), according to the results of mineral durability. PbCO3 precipitated more near the injection tube during mineral sequestration and CO2 carbonation. The highest precipitation was 0.12% with an inlet CO2 rate of 0.7 L/min. In conclusion, Pb was removed from the soil at a rate of 99%. The permeability of the contaminated soil was reduced (from 4.6 × 10−3 to 3.7 × 10−4 cm/s) as PbCO3 deposition increased between soil particles, although this did not affect the soil hydraulic conductivity. The results demonstrated the efficacy of CO2 use as a unique technique to remove Pb from the soil.
    • Download: (1.342Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Green Remediation for Lead-Contaminated Soil Using Carbon Dioxide Injection

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286412
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorHamed Abdeh Keykha
    contributor authorAlireza Ardakani
    contributor authorHamid Talebi
    contributor authorHadi Mohamadzadeh Romiani
    date accessioned2022-08-18T12:18:59Z
    date available2022-08-18T12:18:59Z
    date issued2022/06/23
    identifier other%28ASCE%29HZ.2153-5515.0000712.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286412
    description abstractNumerous studies have been conducted to remove lead (Pb) from the soil. This study proposed a novel approach that used carbon dioxide (CO2) as a cleaning reagent for the remediation and immobilization of Pb contamination in sandy soil. First, contaminated soil with 5,000 ppm lead nitrate (Pb(NO3)2) was prepared in a setup box. Then, sodium hydroxide solution (NaOH) (2 M) was injected into the soil to react and create sodium tetrahydroxyplumbate (II) [Na2[Pb(OH)4]]. The CO2 gas was then introduced into the contaminated soil to react, which resulted in the formation of lead carbonate (PbCO3) minerals. The soil samples were collected from across the setup box at different distances and depths from the injection tube after various times. PbCO3 crystals were identified as cerussite by scanning electron microscope (SEM) and X-ray diffraction (XRD) investigations. Cerussite had poorer solubility under acidic conditions (e.g., 0.5% at pH 7 and 6.25% at pH 5), according to the results of mineral durability. PbCO3 precipitated more near the injection tube during mineral sequestration and CO2 carbonation. The highest precipitation was 0.12% with an inlet CO2 rate of 0.7 L/min. In conclusion, Pb was removed from the soil at a rate of 99%. The permeability of the contaminated soil was reduced (from 4.6 × 10−3 to 3.7 × 10−4 cm/s) as PbCO3 deposition increased between soil particles, although this did not affect the soil hydraulic conductivity. The results demonstrated the efficacy of CO2 use as a unique technique to remove Pb from the soil.
    publisherASCE
    titleGreen Remediation for Lead-Contaminated Soil Using Carbon Dioxide Injection
    typeJournal Article
    journal volume26
    journal issue4
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.2153-5515.0000712
    journal fristpage04022025
    journal lastpage04022025-8
    page8
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian