YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Regional Trends and Spatiotemporal Analysis of Rainfall and Groundwater in the West Coast Basins of India

    Source: Journal of Hydrologic Engineering:;2022:;Volume ( 027 ):;issue: 008::page 05022008
    Author:
    Chythanya Krishnan
    ,
    Amai Mahesha
    DOI: 10.1061/(ASCE)HE.1943-5584.0002177
    Publisher: ASCE
    Abstract: The present study investigates the spatiotemporal variabilities of long-term (1950–2016) rainfall and regional groundwater levels for annual and seasonal periods over the west coast of India. The study area is a narrow strip of land between Western Ghats (mountainous terrain) and the Arabian Sea, extending over 1,500 km from south to north. The Mann Kendall (MK) and Sen’s slope estimator established the long-term trend and magnitude of rainfall and groundwater. The nature of trends in the time series of hydroclimatic variables was identified through singular spectrum analysis (SSA). The SSA extracted nonlinear trends along with the shape for both increasing and decreasing trends. Annual and southwest monsoon rainfall exhibited prominent decreasing trends. The percentage departure analysis of rainfall revealed that earlier decades (1950–1980) were the wettest, followed by the drier decades (1980–2016) for Periyar, Varrar, and Netravati and vice versa for Vasishti and Bhatsol. The wavelet spectra for rainfall indicated short- and long-term modulations. The long-term groundwater level trends of 725 wells on the entire west coast showed a significant decline in 13% of wells, and 6% of wells indicated increasing trends. The Monte Carlo–based numerical investigations on the modified MK (mMK) test power indicated the influence of parent distributions on trend detection. The field significance of trends at a 5% significance level was examined using the bootstrap test. The precipitation data were then compared with groundwater level variation at each site, and correlations were established. The declining southwest monsoon rains and their uneven spatial distribution could be attributed to a subsequent decline in the region’s postmonsoon groundwater levels.
    • Download: (5.789Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Regional Trends and Spatiotemporal Analysis of Rainfall and Groundwater in the West Coast Basins of India

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286381
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorChythanya Krishnan
    contributor authorAmai Mahesha
    date accessioned2022-08-18T12:18:04Z
    date available2022-08-18T12:18:04Z
    date issued2022/05/27
    identifier other%28ASCE%29HE.1943-5584.0002177.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286381
    description abstractThe present study investigates the spatiotemporal variabilities of long-term (1950–2016) rainfall and regional groundwater levels for annual and seasonal periods over the west coast of India. The study area is a narrow strip of land between Western Ghats (mountainous terrain) and the Arabian Sea, extending over 1,500 km from south to north. The Mann Kendall (MK) and Sen’s slope estimator established the long-term trend and magnitude of rainfall and groundwater. The nature of trends in the time series of hydroclimatic variables was identified through singular spectrum analysis (SSA). The SSA extracted nonlinear trends along with the shape for both increasing and decreasing trends. Annual and southwest monsoon rainfall exhibited prominent decreasing trends. The percentage departure analysis of rainfall revealed that earlier decades (1950–1980) were the wettest, followed by the drier decades (1980–2016) for Periyar, Varrar, and Netravati and vice versa for Vasishti and Bhatsol. The wavelet spectra for rainfall indicated short- and long-term modulations. The long-term groundwater level trends of 725 wells on the entire west coast showed a significant decline in 13% of wells, and 6% of wells indicated increasing trends. The Monte Carlo–based numerical investigations on the modified MK (mMK) test power indicated the influence of parent distributions on trend detection. The field significance of trends at a 5% significance level was examined using the bootstrap test. The precipitation data were then compared with groundwater level variation at each site, and correlations were established. The declining southwest monsoon rains and their uneven spatial distribution could be attributed to a subsequent decline in the region’s postmonsoon groundwater levels.
    publisherASCE
    titleRegional Trends and Spatiotemporal Analysis of Rainfall and Groundwater in the West Coast Basins of India
    typeJournal Article
    journal volume27
    journal issue8
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0002177
    journal fristpage05022008
    journal lastpage05022008-20
    page20
    treeJournal of Hydrologic Engineering:;2022:;Volume ( 027 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian