Show simple item record

contributor authorAbigail H. Bateman
contributor authorJamie J. Crispin
contributor authorPaul J. Vardanega
contributor authorGeorge E. Mylonakis
date accessioned2022-08-18T12:17:08Z
date available2022-08-18T12:17:08Z
date issued2022/05/06
identifier other%28ASCE%29GT.1943-5606.0002753.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286352
description abstractEstimation of nonlinear pile settlement can be simplified using one-dimensional “t-z” curves that conveniently divide the soil into multiple horizontal “slices.” This simplification reduces the continuum analysis to a two-point boundary-value problem of the Winkler type, which can be tackled by standard numerical procedures. Theoretical “t-z” curves can be established using the “shearing-of-concentric-cylinders” theory of Cooke and Randolph-Wroth, which involves two main elements: (1) a constitutive model cast in flexibility form, γ=γ(τ); and (2) an attenuation function of shear stress with radial distance from the pile, τ=τ(r). Soil settlement can then be determined by integrating shear strains over the radial coordinate, which often leads to closed-form solutions. Despite the simplicity and physical appeal of the method, only a few theoretical “t-z” curves are available in the literature. This paper introduces three novel attenuation functions for shear stresses, inspired by continuum solutions, which are employed in conjunction with eight soil constitutive models leading to a set of 32 “t-z” curves. Illustrative examples of pile settlement calculation in two soil types are presented to demonstrate application of the method.
publisherASCE
titleTheoretical t-z Curves for Axially Loaded Piles
typeJournal Article
journal volume148
journal issue7
journal titleJournal of Geotechnical and Geoenvironmental Engineering
identifier doi10.1061/(ASCE)GT.1943-5606.0002753
journal fristpage04022052
journal lastpage04022052-20
page20
treeJournal of Geotechnical and Geoenvironmental Engineering:;2022:;Volume ( 148 ):;issue: 007
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record