YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    NURBS Surface-Altering Optimization for Identifying Critical Slip Surfaces in 3D Slopes

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 009::page 04022154
    Author:
    Terence Ma
    ,
    Ramin Mafi
    ,
    Brigid Cami
    ,
    Sina Javankhoshdel
    ,
    Amir H. Gandomi
    DOI: 10.1061/(ASCE)GM.1943-5622.0002517
    Publisher: ASCE
    Abstract: The evaluation of slope stability of a three-dimensional slope requires identifying the critical slip surface with the minimum factor of safety, which is a complex optimization problem. Failure to identify the critical slip surface can lead to unconservative conclusions about the stability of a slope. This paper proposes a novel 3D surface-altering optimization method, which iteratively alters the geometry of a 3D slip surface to find the critical slip surface representing the minimum factor of safety in a slope. The geometry of the slip surface is defined via nonuniform rational basis spline (NURBS) curves formed over a plan grid of control points. The proposed method includes a series of five subroutines that apply various forms of transformations to the control points. These subroutines include minimization problems, which determine the optimal transformation parameters for minimizing the obtained factor of safety of the resulting slip surfaces. Given that any geometrically defined slip surface can be approximated using an equivalent series of NURBS control points, the proposed method can be used in efforts to further reduce the global factor of safety first obtained via conventional search methods, such as those involving spherical or ellipsoidal slip surfaces. To demonstrate its effectiveness, the proposed method was applied to further optimize the critical ellipsoidal slip surfaces reported in some numerical examples. Comparing the results with those limited to ellipsoidal slip surfaces, the proposed method was consistently able to identify slip surfaces with significantly lower factors of safety. The postaltered slip surfaces also matched closely with finite element shear strength reduction results. As such, the proposed method is effective in searching for critical slip surfaces and can be used as a final step in the critical surface searching routine.
    • Download: (2.140Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      NURBS Surface-Altering Optimization for Identifying Critical Slip Surfaces in 3D Slopes

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286347
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorTerence Ma
    contributor authorRamin Mafi
    contributor authorBrigid Cami
    contributor authorSina Javankhoshdel
    contributor authorAmir H. Gandomi
    date accessioned2022-08-18T12:16:59Z
    date available2022-08-18T12:16:59Z
    date issued2022/07/11
    identifier other%28ASCE%29GM.1943-5622.0002517.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286347
    description abstractThe evaluation of slope stability of a three-dimensional slope requires identifying the critical slip surface with the minimum factor of safety, which is a complex optimization problem. Failure to identify the critical slip surface can lead to unconservative conclusions about the stability of a slope. This paper proposes a novel 3D surface-altering optimization method, which iteratively alters the geometry of a 3D slip surface to find the critical slip surface representing the minimum factor of safety in a slope. The geometry of the slip surface is defined via nonuniform rational basis spline (NURBS) curves formed over a plan grid of control points. The proposed method includes a series of five subroutines that apply various forms of transformations to the control points. These subroutines include minimization problems, which determine the optimal transformation parameters for minimizing the obtained factor of safety of the resulting slip surfaces. Given that any geometrically defined slip surface can be approximated using an equivalent series of NURBS control points, the proposed method can be used in efforts to further reduce the global factor of safety first obtained via conventional search methods, such as those involving spherical or ellipsoidal slip surfaces. To demonstrate its effectiveness, the proposed method was applied to further optimize the critical ellipsoidal slip surfaces reported in some numerical examples. Comparing the results with those limited to ellipsoidal slip surfaces, the proposed method was consistently able to identify slip surfaces with significantly lower factors of safety. The postaltered slip surfaces also matched closely with finite element shear strength reduction results. As such, the proposed method is effective in searching for critical slip surfaces and can be used as a final step in the critical surface searching routine.
    publisherASCE
    titleNURBS Surface-Altering Optimization for Identifying Critical Slip Surfaces in 3D Slopes
    typeJournal Article
    journal volume22
    journal issue9
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002517
    journal fristpage04022154
    journal lastpage04022154-18
    page18
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian