YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Disturbed State Concept–Based Model for the Uniaxial Strain-Softening Behavior of Fiber-Reinforced Soil

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 007::page 04022092
    Author:
    Zhipeng Wu
    ,
    Jian Xu
    ,
    Yanfeng Li
    ,
    Songhe Wang
    DOI: 10.1061/(ASCE)GM.1943-5622.0002415
    Publisher: ASCE
    Abstract: A uniaxial strain-softening constitutive model for fiber-reinforced soils is developed based on the disturbed state concept (DSC). The response in the relatively intact state is assumed to satisfy the Duncan–Chang model obtained from the prepeak stress–strain curve, while the fully adjusted state response satisfies the linear model obtained by an extension of the residual strength. The apparent stress–strain curve is a weighted average response derived from the two aforementioned response curves by a disturbance function that acts as the weight. The peak of the stress–strain curve and the postpeak stable point are assumed as the starting and ending points of the disturbance, respectively, which assign a reasonable physical sense to the parameters in the disturbance function. Comparisons of stress–strain curves and peak strength reveal that for a specified fiber, fiber content exhibits a greater influence on the reinforcement effect than fiber length. Five required parameters that vary with fiber content are used in the DSC model. Five sets of uniaxial compression test data of different fiber-reinforced soils are evaluated, and a high consistency between the stress–strain curves predicted by the DSC model and the test curves is noted. Both the consistency index δ and the energy absorption capacity reveal a satisfactory description of the fiber reinforcement effect.
    • Download: (1.705Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Disturbed State Concept–Based Model for the Uniaxial Strain-Softening Behavior of Fiber-Reinforced Soil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286281
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorZhipeng Wu
    contributor authorJian Xu
    contributor authorYanfeng Li
    contributor authorSonghe Wang
    date accessioned2022-08-18T12:15:05Z
    date available2022-08-18T12:15:05Z
    date issued2022/05/03
    identifier other%28ASCE%29GM.1943-5622.0002415.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286281
    description abstractA uniaxial strain-softening constitutive model for fiber-reinforced soils is developed based on the disturbed state concept (DSC). The response in the relatively intact state is assumed to satisfy the Duncan–Chang model obtained from the prepeak stress–strain curve, while the fully adjusted state response satisfies the linear model obtained by an extension of the residual strength. The apparent stress–strain curve is a weighted average response derived from the two aforementioned response curves by a disturbance function that acts as the weight. The peak of the stress–strain curve and the postpeak stable point are assumed as the starting and ending points of the disturbance, respectively, which assign a reasonable physical sense to the parameters in the disturbance function. Comparisons of stress–strain curves and peak strength reveal that for a specified fiber, fiber content exhibits a greater influence on the reinforcement effect than fiber length. Five required parameters that vary with fiber content are used in the DSC model. Five sets of uniaxial compression test data of different fiber-reinforced soils are evaluated, and a high consistency between the stress–strain curves predicted by the DSC model and the test curves is noted. Both the consistency index δ and the energy absorption capacity reveal a satisfactory description of the fiber reinforcement effect.
    publisherASCE
    titleDisturbed State Concept–Based Model for the Uniaxial Strain-Softening Behavior of Fiber-Reinforced Soil
    typeJournal Article
    journal volume22
    journal issue7
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002415
    journal fristpage04022092
    journal lastpage04022092-11
    page11
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian