YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Elastoplastic Constitutive Model of Sand–Gravel Composites Considering the Whole Shearing Process

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 009::page 04022056
    Author:
    Xingliang Wang
    ,
    Bin Xu
    ,
    Chong Tang
    ,
    Chenguang Zhou
    ,
    Rui Pang
    DOI: 10.1061/(ASCE)EM.1943-7889.0002142
    Publisher: ASCE
    Abstract: In the framework of generalized plasticity theory, this paper presents a new elastoplastic model to characterize complicated softening/hardening and dilation/contraction behaviors of sand–gravel composites in triaxial tests. The model has six parameters that are determined by the conventional triaxial test directly, which is of great practical interest to engineers. The dilatancy equation that is able to describe the dilatancy of sand–gravel composites during the whole shearing process is incorporated into the model. The advantage of the proposed model in predicting the dilatancy behavior of sand–gravel composites is demonstrated by comparing it with three widely used dilatancy equations. A set of drained triaxial compression tests were launched to examine the performance of the proposed model. In addition, the applicability of the model is also confirmed by sand–gravel composites tests covering a wider range of confining pressure in previous literature. The generality of the model on other granular materials including rockfill, Ottawa sand, calcareous sand, cement-sand–gravel material, and glass beads mixtures is also verified by comparing the experimental results with the corresponding fitting results. Furthermore, the proposed model is programmed into the nonlinear finite element program GEODYNA and applied to the numerical simulation of high concrete-faced sand–gravel dams. Summarizing the fitting and numerical results comprehensively, the constitutive model proposed in this study is capable of characterizing the mechanical behaviors of granular materials and can provide a powerful tool for geotechnical engineering.
    • Download: (2.026Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Elastoplastic Constitutive Model of Sand–Gravel Composites Considering the Whole Shearing Process

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286256
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorXingliang Wang
    contributor authorBin Xu
    contributor authorChong Tang
    contributor authorChenguang Zhou
    contributor authorRui Pang
    date accessioned2022-08-18T12:14:16Z
    date available2022-08-18T12:14:16Z
    date issued2022/07/13
    identifier other%28ASCE%29EM.1943-7889.0002142.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286256
    description abstractIn the framework of generalized plasticity theory, this paper presents a new elastoplastic model to characterize complicated softening/hardening and dilation/contraction behaviors of sand–gravel composites in triaxial tests. The model has six parameters that are determined by the conventional triaxial test directly, which is of great practical interest to engineers. The dilatancy equation that is able to describe the dilatancy of sand–gravel composites during the whole shearing process is incorporated into the model. The advantage of the proposed model in predicting the dilatancy behavior of sand–gravel composites is demonstrated by comparing it with three widely used dilatancy equations. A set of drained triaxial compression tests were launched to examine the performance of the proposed model. In addition, the applicability of the model is also confirmed by sand–gravel composites tests covering a wider range of confining pressure in previous literature. The generality of the model on other granular materials including rockfill, Ottawa sand, calcareous sand, cement-sand–gravel material, and glass beads mixtures is also verified by comparing the experimental results with the corresponding fitting results. Furthermore, the proposed model is programmed into the nonlinear finite element program GEODYNA and applied to the numerical simulation of high concrete-faced sand–gravel dams. Summarizing the fitting and numerical results comprehensively, the constitutive model proposed in this study is capable of characterizing the mechanical behaviors of granular materials and can provide a powerful tool for geotechnical engineering.
    publisherASCE
    titleElastoplastic Constitutive Model of Sand–Gravel Composites Considering the Whole Shearing Process
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002142
    journal fristpage04022056
    journal lastpage04022056-13
    page13
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian