YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Engineering Mechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhanced Fractional Model for Soil–Structure Interface Considering 3D Stress State and Fabric Effect

    Source: Journal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 009::page 04022054
    Author:
    Yifei Sun
    ,
    Wojciech Sumelka
    ,
    Shaoheng He
    ,
    Yufeng Gao
    DOI: 10.1061/(ASCE)EM.1943-7889.0002133
    Publisher: ASCE
    Abstract: Engineering structures in the field are exposed to three-dimensional (3D) stress-displacement conditions with fabric evolution occurring within the soil–structure interface. Upon 3D shearing, the fabric of the interface would change with shear displacement, which influences the dilatancy or plastic flow response of the interface. To consider the 3D stress state and fabric effect, an enhanced fractional model for the interface under monotonic and cyclic loads is developed by using a multiaxial loading vector, a fabric-dependent plastic flow vector, and a kinematic hardening rule. The developed model has three key features: (1) 3D stress-displacement response with shear coupling in different directions is considered by the 3D elastoplastic relation; (2) fabric-dependent dilatancy state line of the interface is captured via a fabric scalar; and (3) dependence of particle breakage on the critical state line of the interface is also considered by introducing a shift stress. To validate the proposed model, a series of test results obtained from the interface direct shear test and simple shear test are simulated. Discussions on model performances with and without considering the fabric effect are then carried out. It is found that the developed model can capture the key features, e.g., hardening/softening, dilatancy/contraction, and strength degradation, of different soil–structure interfaces. The evolution of the fabric scalar mobilized the dilatancy state of the interface under cyclic loads, through which the remarkable normal contraction response under cyclic loading is successfully captured when compared to those without considering fabric effect.
    • Download: (5.261Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhanced Fractional Model for Soil–Structure Interface Considering 3D Stress State and Fabric Effect

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286247
    Collections
    • Journal of Engineering Mechanics

    Show full item record

    contributor authorYifei Sun
    contributor authorWojciech Sumelka
    contributor authorShaoheng He
    contributor authorYufeng Gao
    date accessioned2022-08-18T12:14:00Z
    date available2022-08-18T12:14:00Z
    date issued2022/07/12
    identifier other%28ASCE%29EM.1943-7889.0002133.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286247
    description abstractEngineering structures in the field are exposed to three-dimensional (3D) stress-displacement conditions with fabric evolution occurring within the soil–structure interface. Upon 3D shearing, the fabric of the interface would change with shear displacement, which influences the dilatancy or plastic flow response of the interface. To consider the 3D stress state and fabric effect, an enhanced fractional model for the interface under monotonic and cyclic loads is developed by using a multiaxial loading vector, a fabric-dependent plastic flow vector, and a kinematic hardening rule. The developed model has three key features: (1) 3D stress-displacement response with shear coupling in different directions is considered by the 3D elastoplastic relation; (2) fabric-dependent dilatancy state line of the interface is captured via a fabric scalar; and (3) dependence of particle breakage on the critical state line of the interface is also considered by introducing a shift stress. To validate the proposed model, a series of test results obtained from the interface direct shear test and simple shear test are simulated. Discussions on model performances with and without considering the fabric effect are then carried out. It is found that the developed model can capture the key features, e.g., hardening/softening, dilatancy/contraction, and strength degradation, of different soil–structure interfaces. The evolution of the fabric scalar mobilized the dilatancy state of the interface under cyclic loads, through which the remarkable normal contraction response under cyclic loading is successfully captured when compared to those without considering fabric effect.
    publisherASCE
    titleEnhanced Fractional Model for Soil–Structure Interface Considering 3D Stress State and Fabric Effect
    typeJournal Article
    journal volume148
    journal issue9
    journal titleJournal of Engineering Mechanics
    identifier doi10.1061/(ASCE)EM.1943-7889.0002133
    journal fristpage04022054
    journal lastpage04022054-16
    page16
    treeJournal of Engineering Mechanics:;2022:;Volume ( 148 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian