YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Environmental Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reduction and Control of Antibiotic-Resistance Genes and Mobile Genetic Elements in Tetracycline Livestock Wastewater Treated by Microbial Fuel Cell

    Source: Journal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 008::page 04022039
    Author:
    Jia Chen
    ,
    Jingyue Guo
    ,
    Ke Zhang
    ,
    Tingting Wang
    ,
    Hongbing Luo
    ,
    Wei Chen
    ,
    You Mo
    ,
    Mengling Chen
    ,
    Xiuzhong Huang
    DOI: 10.1061/(ASCE)EE.1943-7870.0002028
    Publisher: ASCE
    Abstract: The removal effects of livestock wastewater dominated by tetracycline antibiotic in microbial fuel cell (MFC) and the fate of antibiotic-resistance genes (ARGs) and mobile genetic elements (MGEs) were evaluated by high-throughput quantitative polymerase chain reaction (PCR). In total, 132 kinds of ARGs and seven kinds of MGEs were detected in the untreated livestock wastewater. A decrease in the number of ARGs and MGEs was observed after MFC treatment, among which MGEs decreased by 71.4%. Chloramphenicol-resistance genes and MGEs both dropped in relative abundance, by 58.6% and 55.5%, respectively. The absolute abundance of sulfonamide-resistance genes fell from 5.9×105copiesL−1 to 3.7×105copiesL−1. Vancomycin-resistance genes (130±10copiesL−1) and beta-lactamase-resistance genes (180±10copiesL−1), on the other hand, were not effectively eliminated. After the tetracycline concentration was increased to 6mgL−1, the chemical oxygen demand (COD) removal rate reached up to 88.8%. The corresponding maximum power density value was 763.695mWm−3. A clear alteration in the microbial community structure was noticed as tetracycline concentrations increased. Illumina sequencing indicated that Pandoraea (12.4%), Chitinophaga (12.8%), Dyella (7.3%), and Chryseobacterium (5.4%) were the dominant genera. They were critical for ensuring the reactor’s stable operation and played a significant role in tetracycline degradation in MFC. Results showed that the MFC system had strong resistance to antibiotic toxicity and high potential to control ARGs. Although MFC’s removal efficiency for high tetracycline concentration was limited in this work, MFC was found to have an essential role in lowering ARGs and limiting horizontal gene transfer.
    • Download: (3.135Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reduction and Control of Antibiotic-Resistance Genes and Mobile Genetic Elements in Tetracycline Livestock Wastewater Treated by Microbial Fuel Cell

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286209
    Collections
    • Journal of Environmental Engineering

    Show full item record

    contributor authorJia Chen
    contributor authorJingyue Guo
    contributor authorKe Zhang
    contributor authorTingting Wang
    contributor authorHongbing Luo
    contributor authorWei Chen
    contributor authorYou Mo
    contributor authorMengling Chen
    contributor authorXiuzhong Huang
    date accessioned2022-08-18T12:12:36Z
    date available2022-08-18T12:12:36Z
    date issued2022/06/03
    identifier other%28ASCE%29EE.1943-7870.0002028.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286209
    description abstractThe removal effects of livestock wastewater dominated by tetracycline antibiotic in microbial fuel cell (MFC) and the fate of antibiotic-resistance genes (ARGs) and mobile genetic elements (MGEs) were evaluated by high-throughput quantitative polymerase chain reaction (PCR). In total, 132 kinds of ARGs and seven kinds of MGEs were detected in the untreated livestock wastewater. A decrease in the number of ARGs and MGEs was observed after MFC treatment, among which MGEs decreased by 71.4%. Chloramphenicol-resistance genes and MGEs both dropped in relative abundance, by 58.6% and 55.5%, respectively. The absolute abundance of sulfonamide-resistance genes fell from 5.9×105copiesL−1 to 3.7×105copiesL−1. Vancomycin-resistance genes (130±10copiesL−1) and beta-lactamase-resistance genes (180±10copiesL−1), on the other hand, were not effectively eliminated. After the tetracycline concentration was increased to 6mgL−1, the chemical oxygen demand (COD) removal rate reached up to 88.8%. The corresponding maximum power density value was 763.695mWm−3. A clear alteration in the microbial community structure was noticed as tetracycline concentrations increased. Illumina sequencing indicated that Pandoraea (12.4%), Chitinophaga (12.8%), Dyella (7.3%), and Chryseobacterium (5.4%) were the dominant genera. They were critical for ensuring the reactor’s stable operation and played a significant role in tetracycline degradation in MFC. Results showed that the MFC system had strong resistance to antibiotic toxicity and high potential to control ARGs. Although MFC’s removal efficiency for high tetracycline concentration was limited in this work, MFC was found to have an essential role in lowering ARGs and limiting horizontal gene transfer.
    publisherASCE
    titleReduction and Control of Antibiotic-Resistance Genes and Mobile Genetic Elements in Tetracycline Livestock Wastewater Treated by Microbial Fuel Cell
    typeJournal Article
    journal volume148
    journal issue8
    journal titleJournal of Environmental Engineering
    identifier doi10.1061/(ASCE)EE.1943-7870.0002028
    journal fristpage04022039
    journal lastpage04022039-11
    page11
    treeJournal of Environmental Engineering:;2022:;Volume ( 148 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian