YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Construction Engineering and Management
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Forecasting Construction Project Performance with Momentum Using Singularity Functions in LPS

    Source: Journal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 008::page 04022063
    Author:
    Ali Ezzeddine
    ,
    Lynn Shehab
    ,
    Gunnar Lucko
    ,
    Farook Hamzeh
    DOI: 10.1061/(ASCE)CO.1943-7862.0002320
    Publisher: ASCE
    Abstract: Construction planning and control are crucial for project success. The last planner system (LPS) presents a proactive approach to plan and control production, designed to increase reliability and enhance the make-ready process. Several metrics guide the planning process at the macro level (master and phase scheduling) and the micro level (lookahead and weekly work planning). However, LPS still lacks a mathematical model that can systematically and continuously analyze such metrics, especially to forecast project performance. Moreover, there are no studies on the effect of the fluctuations of lookahead-planning LPS metrics on the metrics at the weekly work plan level. This research, therefore, proposed a new mathematical model using singularity functions, which are types of range-based expressions that track the different paths that each task can follow, from lookahead planning to weekly work planning, and evaluate LPS metrics. To assess project performance, the concept of momentum was introduced as the rate of change in metrics from week to week. Momentum was applied to the Tasks Made Ready (TMR) metric to predict the Percent Plan Complete (PPC). Through machine learning models, results show that momentum can predict PPC with over 93% correlation between actual and predicted PPC values. Data from actual construction execution in the United States were used to validate the proposed model. The contribution of this research lies in (1) conceiving a mathematical model method for project control; and (2) introducing the concept of momentum, which takes the rate of change of any metric into account, incorporated into the LPS for more reliable planning. The methodology proposed in this study can help industry better plan its projects and leverage the concept of momentum to better predict PPC, which is essential for every planning and control process in construction projects.
    • Download: (1.367Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Forecasting Construction Project Performance with Momentum Using Singularity Functions in LPS

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4286128
    Collections
    • Journal of Construction Engineering and Management

    Show full item record

    contributor authorAli Ezzeddine
    contributor authorLynn Shehab
    contributor authorGunnar Lucko
    contributor authorFarook Hamzeh
    date accessioned2022-08-18T12:10:16Z
    date available2022-08-18T12:10:16Z
    date issued2022/05/23
    identifier other%28ASCE%29CO.1943-7862.0002320.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4286128
    description abstractConstruction planning and control are crucial for project success. The last planner system (LPS) presents a proactive approach to plan and control production, designed to increase reliability and enhance the make-ready process. Several metrics guide the planning process at the macro level (master and phase scheduling) and the micro level (lookahead and weekly work planning). However, LPS still lacks a mathematical model that can systematically and continuously analyze such metrics, especially to forecast project performance. Moreover, there are no studies on the effect of the fluctuations of lookahead-planning LPS metrics on the metrics at the weekly work plan level. This research, therefore, proposed a new mathematical model using singularity functions, which are types of range-based expressions that track the different paths that each task can follow, from lookahead planning to weekly work planning, and evaluate LPS metrics. To assess project performance, the concept of momentum was introduced as the rate of change in metrics from week to week. Momentum was applied to the Tasks Made Ready (TMR) metric to predict the Percent Plan Complete (PPC). Through machine learning models, results show that momentum can predict PPC with over 93% correlation between actual and predicted PPC values. Data from actual construction execution in the United States were used to validate the proposed model. The contribution of this research lies in (1) conceiving a mathematical model method for project control; and (2) introducing the concept of momentum, which takes the rate of change of any metric into account, incorporated into the LPS for more reliable planning. The methodology proposed in this study can help industry better plan its projects and leverage the concept of momentum to better predict PPC, which is essential for every planning and control process in construction projects.
    publisherASCE
    titleForecasting Construction Project Performance with Momentum Using Singularity Functions in LPS
    typeJournal Article
    journal volume148
    journal issue8
    journal titleJournal of Construction Engineering and Management
    identifier doi10.1061/(ASCE)CO.1943-7862.0002320
    journal fristpage04022063
    journal lastpage04022063-11
    page11
    treeJournal of Construction Engineering and Management:;2022:;Volume ( 148 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian