YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    •   YE&T Library
    • AMS
    • Earth Interactions
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Positive Associations of Vegetation with Temperature over the Alpine Grasslands in the Western Tibetan Plateau during May

    Source: Earth Interactions:;2022:;volume( 026 ):;issue: 001
    DOI: 10.1175/EI-D-21-0017.1
    Abstract: The Tibetan Plateau (TP) has undergone extreme changes in climatic and land surface conditions that are due to a warming climate and land-cover changes. We examined the change in vegetation dynamics from 1982 to 2015 and explored the associations of vegetation with atmospheric variables over the alpine grasslands in the western TP during May as an early growing season. The linear regression analysis of area-averaged normalized difference vegetation index (NDVI) over the western TP in May demonstrated a 7.5% decrease of NDVI during the period from 1982 to 2015, an increase of NDVI by 11.3% from 1982 to 1998, and a decrease of NDVI by 14.5% from 1999 to 2015. The significantly changed NDVI in the western TP could result in the substantial changes in surface energy balances as shown in the surface climatic variables of albedo, net solar radiation, sensible heat flux, latent heat fluxes, and 2-m temperature. The land and atmosphere associations were not confined to the surface but also extended into the upper-level atmosphere up to the 300-hPa level as indicated by the significant positive associations between NDVI and temperatures in both air temperature and equivalent temperature, resulting in more than a 1-K increase with NDVI. Therefore, we concluded that the increasing or decreasing vegetation cover in the western TP during May can respectively increase or decrease the temperatures near the surface and upper atmosphere through a positive physical linkage among the vegetation cover, surface energy fluxes, and temperatures. The positive energy processes of vegetation with temperature could further amplify the variations of temperature and thus water availability.
    • Download: (3.464Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Positive Associations of Vegetation with Temperature over the Alpine Grasslands in the Western Tibetan Plateau during May

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4285823
    Collections
    • Earth Interactions

    Show full item record

    date accessioned2022-05-09T00:54:20Z
    date available2022-05-09T00:54:20Z
    date copyright06 Apr 2022
    date issued2022
    identifier otherEI-D-21-0017.1.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4285823
    description abstractThe Tibetan Plateau (TP) has undergone extreme changes in climatic and land surface conditions that are due to a warming climate and land-cover changes. We examined the change in vegetation dynamics from 1982 to 2015 and explored the associations of vegetation with atmospheric variables over the alpine grasslands in the western TP during May as an early growing season. The linear regression analysis of area-averaged normalized difference vegetation index (NDVI) over the western TP in May demonstrated a 7.5% decrease of NDVI during the period from 1982 to 2015, an increase of NDVI by 11.3% from 1982 to 1998, and a decrease of NDVI by 14.5% from 1999 to 2015. The significantly changed NDVI in the western TP could result in the substantial changes in surface energy balances as shown in the surface climatic variables of albedo, net solar radiation, sensible heat flux, latent heat fluxes, and 2-m temperature. The land and atmosphere associations were not confined to the surface but also extended into the upper-level atmosphere up to the 300-hPa level as indicated by the significant positive associations between NDVI and temperatures in both air temperature and equivalent temperature, resulting in more than a 1-K increase with NDVI. Therefore, we concluded that the increasing or decreasing vegetation cover in the western TP during May can respectively increase or decrease the temperatures near the surface and upper atmosphere through a positive physical linkage among the vegetation cover, surface energy fluxes, and temperatures. The positive energy processes of vegetation with temperature could further amplify the variations of temperature and thus water availability.
    titlePositive Associations of Vegetation with Temperature over the Alpine Grasslands in the Western Tibetan Plateau during May
    typeJournal Paper
    journal volume26
    journal issue1
    journal titleEarth Interactions
    identifier doi10.1175/EI-D-21-0017.1
    page94–111
    treeEarth Interactions:;2022:;volume( 026 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian