| contributor author | Leite, Victor Coppo | |
| contributor author | Merzari, Elia | |
| date accessioned | 2022-05-08T09:08:08Z | |
| date available | 2022-05-08T09:08:08Z | |
| date copyright | 10/6/2021 12:00:00 AM | |
| date issued | 2021 | |
| identifier issn | 0098-2202 | |
| identifier other | fe_144_01_011303.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4284767 | |
| description abstract | In this study, we examine in detail the effect of spatially dependent viscosity on wall-bounded flow. For this purpose, direct numerical simulations (DNS) are performed considering a channel flow with a viscosity change along the streamwise direction. The DNS were performed using nek5000, a computational fluid dynamics code developed at Argonne National Laboratory. The channel is divided into three different regions: in the first one, the flow is at a constant Reynolds number of Re = 5000 | |
| description abstract | in the second region, the Reynolds number is imposed to linearly increase as viscosity decreases through a ramp | |
| description abstract | and finally, in the third region, the flow is again at a constant Reynolds number, this time at Re = 10,000. Since the temperature field is not evaluated, the proposed setup is a simplification of a heated channel. Nevertheless, the outcomes of this study may be valuable for future works considering variable-viscosity effects, especially for cooling and heating applications. Four test cases with different ramp inclinations were analyzed. The results from this study were compared with a correlation available in the literature for the friction Reynolds number as a function of the Reynolds number. We observe that in all cases the ramp does not cause an immediate change in the characteristics of turbulent structures, and a delay is in fact observed in both wall shear and friction. Finally, in order to characterize and understand these effects, streaks from the viscous region and turbulence statistics for the turbulent kinetic energy (TKE) budget terms are analyzed. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Turbulent Channel Flow With Spatially Dependent Viscosity: A Numerical Study | |
| type | Journal Paper | |
| journal volume | 144 | |
| journal issue | 1 | |
| journal title | Journal of Fluids Engineering | |
| identifier doi | 10.1115/1.4052416 | |
| journal fristpage | 11303-1 | |
| journal lastpage | 11303-13 | |
| page | 13 | |
| tree | Journal of Fluids Engineering:;2021:;volume( 144 ):;issue: 001 | |
| contenttype | Fulltext | |