Show simple item record

contributor authorZhang, Tie
contributor authorXu, Jinsheng
contributor authorZou, Yanbiao
date accessioned2022-05-08T09:01:25Z
date available2022-05-08T09:01:25Z
date copyright3/25/2022 12:00:00 AM
date issued2022
identifier issn1555-1415
identifier othercnd_017_06_061006.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284637
description abstractPrecise dynamic parameters are of great significance to the model-based controller of industrial robots. The least square (LS) method is widely used to identify the dynamic parameters in reality, but it is sensitive to the measurement noise and may obtain a biased solution. Besides, the nonlinear dynamics are the key and difficult point of identification, such as the nonlinear friction and the coupling effect of adjacent joint, but they are seldom solved simply and effectively. To cope with the above issues, we propose a backpropagation learning (BPL) method for parameter identification. The mean square error between the measured torque and the calculated torque from the dynamic model is taken as the loss function. The gradient of the loss function with respect to the parameters is computed, and the parameters are updated in the negative gradient direction to minimize the loss function until finding the optimal parameters with the minimum loss function. The optimal parameters will not only fit the modeled torque but also compensate for the torque caused by the unmodeled factors, thus improving the parameter accuracy. The proposed method is essentially a supervised learning method, so the impact of measurement noise is reduced by continuous training with a large amount of valid data. The proposed method is verified in an industrial robot platform, and the experimental results show that the proposed method has smaller errors than the weighted least squares (WLS) method and achieves similar accuracy to the semiparametric model (SPM) but has a better generalization ability.
publisherThe American Society of Mechanical Engineers (ASME)
titleA Backpropagation Learning Method for Dynamic Parameter Identification of Industrial Robots
typeJournal Paper
journal volume17
journal issue6
journal titleJournal of Computational and Nonlinear Dynamics
identifier doi10.1115/1.4053934
journal fristpage61006-1
journal lastpage61006-12
page12
treeJournal of Computational and Nonlinear Dynamics:;2022:;volume( 017 ):;issue: 006
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record