Show simple item record

contributor authorKim, Taehyun
contributor authorJung, Eui Yeop
contributor authorBang, Minho
contributor authorLee, Changyong
contributor authorMoon, Hee Koo
contributor authorCho, Hyung Hee
date accessioned2022-05-08T08:54:08Z
date available2022-05-08T08:54:08Z
date copyright10/5/2021 12:00:00 AM
date issued2021
identifier issn0889-504X
identifier otherturbo_144_3_031009.pdf
identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4284486
description abstractImpingement cooling is one of the powerful cooling methods in high-temperature devices. For the gas turbine applications, impingement cooling is commonly applied in the transition piece of a combustor and in the leading edge, suction and pressure sides of a turbine blade/vane. In the suction side and pressure side, impingement cooling is applied as a form of an array jet. However, due to the small gap between the jet hole and target surface, the wall jet faces a crossflow inside of the gap. This crossflow has an adverse effect on the jets and deteriorates the heat/mass transfer performance. Therefore, several studies have been conducted to minimize the crossflow effect. The present study also investigated the effect of crossflow reduction in the gap by having a castellated hole plate. The heat/mass transfer was measured using the naphthalene sublimation method. Heat/mass transfer data are compared among three different cases. One is the baseline case which is simple array impinging jets. Others are the castellated cases with and without rib structures on the target wall. Jet-to-jet spacing(s/d) and jet-to-target spacing(z/d) are selected as geometrical variables. Also, the experiments were conducted for the Reynolds numbers (based on jet hole diameter) of 5,000, 15,000, and 30,000. The baseline case was named as B case, and the castellated case without rib structure as C case and with rib structure as CR case. Both C and CR cases showed the crossflow reduction effect and resulted high and similar Nusselt number values.
publisherThe American Society of Mechanical Engineers (ASME)
titleHeat Transfer Measurements for Array Jet Impingement With Castellated Wall
typeJournal Paper
journal volume144
journal issue3
journal titleJournal of Turbomachinery
identifier doi10.1115/1.4052315
journal fristpage31009-1
journal lastpage31009-11
page11
treeJournal of Turbomachinery:;2021:;volume( 144 ):;issue: 003
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record