YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Irrigation and Drainage Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of Forecast Reference Evapotranspiration for Different Microclimate Regions in California to Enable Prospective Irrigation Scheduling

    Source: Journal of Irrigation and Drainage Engineering:;2021:;Volume ( 148 ):;issue: 001::page 04021061
    Author:
    Ghaieth Ben Hamouda
    ,
    Daniele Zaccaria
    ,
    Khaled Bali
    ,
    Richard L. Snyder
    ,
    Francesca Ventura
    DOI: 10.1061/(ASCE)IR.1943-4774.0001632
    Publisher: ASCE
    Abstract: In California, daily crop evapotranspiration (ETc) is commonly estimated using near-real-time, standardized reference evapotranspiration (ETo) calculated from ground-based meteorological data and crop coefficient (Kc) values that adjust for the difference between ETo and ETc. However, using ETo calculated from forecast rather than near-real-time meteorological data provides more timely information to growers, farm managers, urban water users, irrigation practitioners, and water purveyors to anticipate water demand for the upcoming days. This is particularly important for water allocation and delivery planning and for irrigation scheduling decisions. Forecast ETo is also relevant for scientific research for developing methods and tools enabling more resource-efficient water use for agricultural production and urban landscapes. Verifying the reliability of ETo forecast models for various climatic conditions is crucial for promoting the broad adoption and use of ETo predictions for weather-based adaptive water management and prospective irrigation scheduling. The US National Weather Service (NWS) has released a product called forecast reference evapotranspiration (FRET) that provides ETo forecasts at a 2.5-km grid resolution for the entire continental US. In this study, comparisons were made between ETo forecasts from FRET and observed ETo values from the California Irrigation Management Information System (CIMIS) for a total of 78 days during the peak irrigation water demand period of 2019, which corresponded to the midseason period for major crops. FRET ETo forecasts and CIMIS ETo observations (calculated from measured weather parameters) were compared for 15 CIMIS station locations to represent a variety of weather conditions of some major agricultural production and urban areas in California. Air temperature, dew point temperature, wind speed, and solar radiation data were collected from NWS and CIMIS and analyzed to assess the accuracy of predicted weather variables and FRET ETo forecasts. The FRET data consisted of 1, 3, 5, and 7-day forecasts of weather parameters and calculated ETo values; these were compared with the corresponding observed daily weather and ETo data from CIMIS in order to statistically evaluate FRET performance. The comparison among forecast and measured weather variables revealed a good match for maximum air temperature (R2 between 0.98 and 1.00), minimum air temperature (R2>0.91), dew point temperature (R2 between 0.7 and 1.00), and wind speed (R2 between 0.66 and 0.99); less accurate results were obtained for solar radiation (R2 between 0.21 and 0.87). The analysis also showed a good correlation between FRET ETo forecast data and observed CIMIS ETo data (R2 between 0.93 and 1.00 and root mean square error (RMSE) was less than 1  mm·day−1) for the majority of the selected stations, with some differences that were likely due to the climatic conditions of specific locations. This suggests that FRET ETo forecasts provide reliable information for predicting near-future water demand and improving irrigation water management in California. The comparisons showed a good match for most of the 15 CIMIS stations, and the FRET model may potentially provide accurate ETo forecasts in similar semiarid and subhumid areas elsewhere. Weekly irrigation schedule examples are provided in the Appendix to illustrate the use of FRET ETo forecasts in combination with site-specific information on soil hydraulic properties and irrigation system performance for prospective irrigation scheduling of some specialty crops and urban landscapes. The information provided in this article can help improve the water management efficiency of high-frequency agricultural irrigation systems and urban sprinkler systems in California and other locations with similar climates. It also offers a less expensive method to obtain ETo data in countries that do not have ETo station networks, because it offers an alternative to installing and maintaining ETo stations in agricultural and urban areas where it is difficult to find acceptable surfaces for developing reliable ETo information.
    • Download: (2.139Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of Forecast Reference Evapotranspiration for Different Microclimate Regions in California to Enable Prospective Irrigation Scheduling

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283767
    Collections
    • Journal of Irrigation and Drainage Engineering

    Show full item record

    contributor authorGhaieth Ben Hamouda
    contributor authorDaniele Zaccaria
    contributor authorKhaled Bali
    contributor authorRichard L. Snyder
    contributor authorFrancesca Ventura
    date accessioned2022-05-07T21:28:11Z
    date available2022-05-07T21:28:11Z
    date issued2021-10-27
    identifier other(ASCE)IR.1943-4774.0001632.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283767
    description abstractIn California, daily crop evapotranspiration (ETc) is commonly estimated using near-real-time, standardized reference evapotranspiration (ETo) calculated from ground-based meteorological data and crop coefficient (Kc) values that adjust for the difference between ETo and ETc. However, using ETo calculated from forecast rather than near-real-time meteorological data provides more timely information to growers, farm managers, urban water users, irrigation practitioners, and water purveyors to anticipate water demand for the upcoming days. This is particularly important for water allocation and delivery planning and for irrigation scheduling decisions. Forecast ETo is also relevant for scientific research for developing methods and tools enabling more resource-efficient water use for agricultural production and urban landscapes. Verifying the reliability of ETo forecast models for various climatic conditions is crucial for promoting the broad adoption and use of ETo predictions for weather-based adaptive water management and prospective irrigation scheduling. The US National Weather Service (NWS) has released a product called forecast reference evapotranspiration (FRET) that provides ETo forecasts at a 2.5-km grid resolution for the entire continental US. In this study, comparisons were made between ETo forecasts from FRET and observed ETo values from the California Irrigation Management Information System (CIMIS) for a total of 78 days during the peak irrigation water demand period of 2019, which corresponded to the midseason period for major crops. FRET ETo forecasts and CIMIS ETo observations (calculated from measured weather parameters) were compared for 15 CIMIS station locations to represent a variety of weather conditions of some major agricultural production and urban areas in California. Air temperature, dew point temperature, wind speed, and solar radiation data were collected from NWS and CIMIS and analyzed to assess the accuracy of predicted weather variables and FRET ETo forecasts. The FRET data consisted of 1, 3, 5, and 7-day forecasts of weather parameters and calculated ETo values; these were compared with the corresponding observed daily weather and ETo data from CIMIS in order to statistically evaluate FRET performance. The comparison among forecast and measured weather variables revealed a good match for maximum air temperature (R2 between 0.98 and 1.00), minimum air temperature (R2>0.91), dew point temperature (R2 between 0.7 and 1.00), and wind speed (R2 between 0.66 and 0.99); less accurate results were obtained for solar radiation (R2 between 0.21 and 0.87). The analysis also showed a good correlation between FRET ETo forecast data and observed CIMIS ETo data (R2 between 0.93 and 1.00 and root mean square error (RMSE) was less than 1  mm·day−1) for the majority of the selected stations, with some differences that were likely due to the climatic conditions of specific locations. This suggests that FRET ETo forecasts provide reliable information for predicting near-future water demand and improving irrigation water management in California. The comparisons showed a good match for most of the 15 CIMIS stations, and the FRET model may potentially provide accurate ETo forecasts in similar semiarid and subhumid areas elsewhere. Weekly irrigation schedule examples are provided in the Appendix to illustrate the use of FRET ETo forecasts in combination with site-specific information on soil hydraulic properties and irrigation system performance for prospective irrigation scheduling of some specialty crops and urban landscapes. The information provided in this article can help improve the water management efficiency of high-frequency agricultural irrigation systems and urban sprinkler systems in California and other locations with similar climates. It also offers a less expensive method to obtain ETo data in countries that do not have ETo station networks, because it offers an alternative to installing and maintaining ETo stations in agricultural and urban areas where it is difficult to find acceptable surfaces for developing reliable ETo information.
    publisherASCE
    titleEvaluation of Forecast Reference Evapotranspiration for Different Microclimate Regions in California to Enable Prospective Irrigation Scheduling
    typeJournal Paper
    journal volume148
    journal issue1
    journal titleJournal of Irrigation and Drainage Engineering
    identifier doi10.1061/(ASCE)IR.1943-4774.0001632
    journal fristpage04021061
    journal lastpage04021061-19
    page19
    treeJournal of Irrigation and Drainage Engineering:;2021:;Volume ( 148 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian