YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hazardous, Toxic, and Radioactive Waste
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Oil–Water Emulsion Separation and Cleaning Performance Study by Cross-Flow Membrane Filtration

    Source: Journal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 003::page 04022017
    Author:
    Vijay Singh
    ,
    Chandan Das
    DOI: 10.1061/(ASCE)HZ.2153-5515.0000695
    Publisher: ASCE
    Abstract: Oil–water emulsion discharge or reuse is a major problem for the environment and ecological systems. This discharge cannot mix with fresh water, owing to the high oil content, total dissolved solids, and chemical oxygen demand (COD). Membrane separation is a unique process to reprocess oily wastewater. The membrane has additional advantages compared with other commercial processes, such as adsorption, distillation, and centrifugation, for example, less energy requirement, no addition of chemicals, and a reduction of the COD to within permissible limits. Transient flux decline and foulant deposition during the operating time are the main drawbacks of the membrane separation process. Transient flux decline could be minimized by using a cross-flow setup. In a cross-flow filtration unit, the cell consists of a flat sheet comprising a polyamide membrane with pore diameters under the microfiltration range. During experiments, the membrane was first fouled, and the fouled membrane was cleaned using a cleaning agent. The membrane fouling experiment was conducted at a 138-kPa transmembrane pressure (TMP) difference in the laminar flow zone. The membrane cleaning operation was essential to recover the initial hydraulic membrane permeability. Deionized water, the anionic surfactant [i.e., sodium dodecyl sulfate (SDS)], and the chelating agent [i.e., ethylenediaminetetraacetic acid (EDTA)], were used to recover the original flux value. A thorough study was conducted into how the membrane performance was improved with variation of chemical agent doses.
    • Download: (639.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Oil–Water Emulsion Separation and Cleaning Performance Study by Cross-Flow Membrane Filtration

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283758
    Collections
    • Journal of Hazardous, Toxic, and Radioactive Waste

    Show full item record

    contributor authorVijay Singh
    contributor authorChandan Das
    date accessioned2022-05-07T21:27:47Z
    date available2022-05-07T21:27:47Z
    date issued2022-7-1
    identifier other(ASCE)HZ.2153-5515.0000695.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283758
    description abstractOil–water emulsion discharge or reuse is a major problem for the environment and ecological systems. This discharge cannot mix with fresh water, owing to the high oil content, total dissolved solids, and chemical oxygen demand (COD). Membrane separation is a unique process to reprocess oily wastewater. The membrane has additional advantages compared with other commercial processes, such as adsorption, distillation, and centrifugation, for example, less energy requirement, no addition of chemicals, and a reduction of the COD to within permissible limits. Transient flux decline and foulant deposition during the operating time are the main drawbacks of the membrane separation process. Transient flux decline could be minimized by using a cross-flow setup. In a cross-flow filtration unit, the cell consists of a flat sheet comprising a polyamide membrane with pore diameters under the microfiltration range. During experiments, the membrane was first fouled, and the fouled membrane was cleaned using a cleaning agent. The membrane fouling experiment was conducted at a 138-kPa transmembrane pressure (TMP) difference in the laminar flow zone. The membrane cleaning operation was essential to recover the initial hydraulic membrane permeability. Deionized water, the anionic surfactant [i.e., sodium dodecyl sulfate (SDS)], and the chelating agent [i.e., ethylenediaminetetraacetic acid (EDTA)], were used to recover the original flux value. A thorough study was conducted into how the membrane performance was improved with variation of chemical agent doses.
    publisherASCE
    titleOil–Water Emulsion Separation and Cleaning Performance Study by Cross-Flow Membrane Filtration
    typeJournal Paper
    journal volume26
    journal issue3
    journal titleJournal of Hazardous, Toxic, and Radioactive Waste
    identifier doi10.1061/(ASCE)HZ.2153-5515.0000695
    journal fristpage04022017
    journal lastpage04022017-6
    page6
    treeJournal of Hazardous, Toxic, and Radioactive Waste:;2022:;Volume ( 026 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian