YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydraulic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Practical Calculation of Sand-Bed River Flow Resistance

    Source: Journal of Hydraulic Engineering:;2021:;Volume ( 148 ):;issue: 002::page 06021019
    Author:
    David C. Froehlich
    DOI: 10.1061/(ASCE)HY.1943-7900.0001961
    Publisher: ASCE
    Abstract: The dynamics of bed configurations and the effect of the bedforms on flow in sand-bed rivers are among the most challenging aspects of fluvial hydraulics to quantify. The big unknown is the resistance coefficient, without an accurate knowledge of which there is not much point in striving for overly precise numerical simulations of water-surface elevations and velocities. Two basic approaches have been used to account for the influence of bedforms on flow resistance. The first method divides the total resistance into two components: one related to impedance generated by the channel boundary without bedforms (grain resistance) and the other related to the opposing force produced by the bedforms (form resistance). The second tactic predicts the total resistance based on the overall flow and sediment parameters. It is the second approach that is followed in this study in which a neural network model is devised based on the evaluation of 941 measurements of reach-averaged flow resistance in small to large sand-bed rivers ranging from shallow to extremely deep. The model considers the influence of the several controlling variables, including water temperature and its effect on fluid viscosity, to make high-quality predictions of a resistance coefficient.
    • Download: (545.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Practical Calculation of Sand-Bed River Flow Resistance

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283685
    Collections
    • Journal of Hydraulic Engineering

    Show full item record

    contributor authorDavid C. Froehlich
    date accessioned2022-05-07T21:24:16Z
    date available2022-05-07T21:24:16Z
    date issued2021-12-08
    identifier other(ASCE)HY.1943-7900.0001961.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283685
    description abstractThe dynamics of bed configurations and the effect of the bedforms on flow in sand-bed rivers are among the most challenging aspects of fluvial hydraulics to quantify. The big unknown is the resistance coefficient, without an accurate knowledge of which there is not much point in striving for overly precise numerical simulations of water-surface elevations and velocities. Two basic approaches have been used to account for the influence of bedforms on flow resistance. The first method divides the total resistance into two components: one related to impedance generated by the channel boundary without bedforms (grain resistance) and the other related to the opposing force produced by the bedforms (form resistance). The second tactic predicts the total resistance based on the overall flow and sediment parameters. It is the second approach that is followed in this study in which a neural network model is devised based on the evaluation of 941 measurements of reach-averaged flow resistance in small to large sand-bed rivers ranging from shallow to extremely deep. The model considers the influence of the several controlling variables, including water temperature and its effect on fluid viscosity, to make high-quality predictions of a resistance coefficient.
    publisherASCE
    titlePractical Calculation of Sand-Bed River Flow Resistance
    typeJournal Paper
    journal volume148
    journal issue2
    journal titleJournal of Hydraulic Engineering
    identifier doi10.1061/(ASCE)HY.1943-7900.0001961
    journal fristpage06021019
    journal lastpage06021019-5
    page5
    treeJournal of Hydraulic Engineering:;2021:;Volume ( 148 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian