YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Hydrologic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evaluation of the Hydrological Performance of Infiltration Trench with Rainfall-Watershed-Infiltration Trench Experimental Setup

    Source: Journal of Hydrologic Engineering:;2021:;Volume ( 027 ):;issue: 003::page 04021050
    Author:
    Kaan İlker Demirezen
    ,
    Cevza Melek Kazezyılmaz-Alhan
    DOI: 10.1061/(ASCE)HE.1943-5584.0002161
    Publisher: ASCE
    Abstract: Urbanization and population growth result in an increase of insufficient groundwater recharge. In order to overcome the adverse effects of urbanization, low impact development (LID) best management practices (BMPs) are introduced. LIDs are nature-based solutions, also called green infrastructures, that have the ability to control both the amount and the quality of stormwater runoff. Rain barrels, vegetative swale, green roofs, bioretention, permeable pavement, and detention ponds are among the examples of LIDs. Within this context, the infiltration trench is also one of the important LID types and is widely implemented in settlement areas. Field-scale experiments may not be sufficient in determining the design criteria of infiltration trenches. Controlled experiments should be conducted in order to identify the optimum design criteria of infiltration trenches for best practices. In this study, the hydrological performance of the infiltration trench is investigated by conducting experiments using an open-lab large-scale rainfall-watershed-infiltration trench (RWI) experimental setup. The RWI experimental setup is built at the Avcılar Campus of Istanbul University-Cerrahpaşa and consists of an artificial rainfall system, an impermeable drainage area, and an infiltration trench. The effect of gravel size, berm height, and rainfall type on the hydrological behavior of the infiltration trench is tested by conducting several experiments. During these experiments, the overflow rate and the drainage rate are measured at the exit of the pipes, located on the front wall and on the base of the infiltration trench, respectively. Results show that the magnitude and lag time of the overflow rate hydrograph are affected by rainfall intensity, gravel size, and berm height significantly. On the other hand, minor changes on the drainage rate hydrograph are observed under different rainfall intensities, gravel sizes, and berm heights. Based on the outcomes of this study, the engineering design guidelines of infiltration trenches are elaborated.
    • Download: (2.103Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evaluation of the Hydrological Performance of Infiltration Trench with Rainfall-Watershed-Infiltration Trench Experimental Setup

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283656
    Collections
    • Journal of Hydrologic Engineering

    Show full item record

    contributor authorKaan İlker Demirezen
    contributor authorCevza Melek Kazezyılmaz-Alhan
    date accessioned2022-05-07T21:23:00Z
    date available2022-05-07T21:23:00Z
    date issued2021-12-20
    identifier other(ASCE)HE.1943-5584.0002161.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283656
    description abstractUrbanization and population growth result in an increase of insufficient groundwater recharge. In order to overcome the adverse effects of urbanization, low impact development (LID) best management practices (BMPs) are introduced. LIDs are nature-based solutions, also called green infrastructures, that have the ability to control both the amount and the quality of stormwater runoff. Rain barrels, vegetative swale, green roofs, bioretention, permeable pavement, and detention ponds are among the examples of LIDs. Within this context, the infiltration trench is also one of the important LID types and is widely implemented in settlement areas. Field-scale experiments may not be sufficient in determining the design criteria of infiltration trenches. Controlled experiments should be conducted in order to identify the optimum design criteria of infiltration trenches for best practices. In this study, the hydrological performance of the infiltration trench is investigated by conducting experiments using an open-lab large-scale rainfall-watershed-infiltration trench (RWI) experimental setup. The RWI experimental setup is built at the Avcılar Campus of Istanbul University-Cerrahpaşa and consists of an artificial rainfall system, an impermeable drainage area, and an infiltration trench. The effect of gravel size, berm height, and rainfall type on the hydrological behavior of the infiltration trench is tested by conducting several experiments. During these experiments, the overflow rate and the drainage rate are measured at the exit of the pipes, located on the front wall and on the base of the infiltration trench, respectively. Results show that the magnitude and lag time of the overflow rate hydrograph are affected by rainfall intensity, gravel size, and berm height significantly. On the other hand, minor changes on the drainage rate hydrograph are observed under different rainfall intensities, gravel sizes, and berm heights. Based on the outcomes of this study, the engineering design guidelines of infiltration trenches are elaborated.
    publisherASCE
    titleEvaluation of the Hydrological Performance of Infiltration Trench with Rainfall-Watershed-Infiltration Trench Experimental Setup
    typeJournal Paper
    journal volume27
    journal issue3
    journal titleJournal of Hydrologic Engineering
    identifier doi10.1061/(ASCE)HE.1943-5584.0002161
    journal fristpage04021050
    journal lastpage04021050-10
    page10
    treeJournal of Hydrologic Engineering:;2021:;Volume ( 027 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian