YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamic Response of a Low Embankment Subjected to Traffic Loads on the Yangtze River Floodplain, China

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 006::page 04022065
    Author:
    Xing Wan
    ,
    Jianwen Ding
    ,
    Zhenshun Hong
    ,
    Cong Huang
    ,
    Shilei Shang
    ,
    Cheng Ding
    DOI: 10.1061/(ASCE)GM.1943-5622.0002357
    Publisher: ASCE
    Abstract: Roadways with low embankments may undergo considerable postconstruction settlement under traffic loads, which can significantly threaten roadway safety. This study aimed to investigate the dynamic response of a low embankment subjected to moving traffic loads on Yangtze River floodplain soils. Dynamic earth stress sensors were installed to monitor the dynamic responses at different depths. Heavy and light vehicles were allowed to drive over these at speeds ranging from 20 to 80 km/h. To verify the effect of pavement thickness, field tests were conducted at two different stages in roadway construction. The spatial distributions and transfer mechanisms of dynamic stress under moving traffic loads were examined through measured data. In addition, a three-dimensional finite-element model was established to further analyze the vertical acceleration and displacement caused by dynamic traffic loading. The results indicated that, with the completion of a semirigid subbase, the significant-influence depth was about 1.6 m under the heavy-vehicle load. In contrast, the dynamic stress became negligible in the upper subgrade layers after completion of the pavement structure, indicating the dominant role of the pavement structure in dispersing dynamic stress. The dynamic responses intensified with increasing magnitude of vehicle load and vehicle speed, but the effect reduced with decreasing pavement roughness. Furthermore, the significant-influence depth of vertical displacement was markedly greater than that determined by dynamic stress.
    • Download: (2.362Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamic Response of a Low Embankment Subjected to Traffic Loads on the Yangtze River Floodplain, China

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283492
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorXing Wan
    contributor authorJianwen Ding
    contributor authorZhenshun Hong
    contributor authorCong Huang
    contributor authorShilei Shang
    contributor authorCheng Ding
    date accessioned2022-05-07T21:14:44Z
    date available2022-05-07T21:14:44Z
    date issued2022-6-1
    identifier other(ASCE)GM.1943-5622.0002357.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283492
    description abstractRoadways with low embankments may undergo considerable postconstruction settlement under traffic loads, which can significantly threaten roadway safety. This study aimed to investigate the dynamic response of a low embankment subjected to moving traffic loads on Yangtze River floodplain soils. Dynamic earth stress sensors were installed to monitor the dynamic responses at different depths. Heavy and light vehicles were allowed to drive over these at speeds ranging from 20 to 80 km/h. To verify the effect of pavement thickness, field tests were conducted at two different stages in roadway construction. The spatial distributions and transfer mechanisms of dynamic stress under moving traffic loads were examined through measured data. In addition, a three-dimensional finite-element model was established to further analyze the vertical acceleration and displacement caused by dynamic traffic loading. The results indicated that, with the completion of a semirigid subbase, the significant-influence depth was about 1.6 m under the heavy-vehicle load. In contrast, the dynamic stress became negligible in the upper subgrade layers after completion of the pavement structure, indicating the dominant role of the pavement structure in dispersing dynamic stress. The dynamic responses intensified with increasing magnitude of vehicle load and vehicle speed, but the effect reduced with decreasing pavement roughness. Furthermore, the significant-influence depth of vertical displacement was markedly greater than that determined by dynamic stress.
    publisherASCE
    titleDynamic Response of a Low Embankment Subjected to Traffic Loads on the Yangtze River Floodplain, China
    typeJournal Paper
    journal volume22
    journal issue6
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002357
    journal fristpage04022065
    journal lastpage04022065-11
    page11
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian