YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Interaction of Soil Arching under Trapdoor Condition: Insights from 2D Discrete-Element Analysis

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 006::page 04022066
    Author:
    Ning Bao
    ,
    Jing Wei
    ,
    Jian-feng Chen
    ,
    Rui Sun
    DOI: 10.1061/(ASCE)GM.1943-5622.0002346
    Publisher: ASCE
    Abstract: The trapdoor/trapdoor-like model test has been widely utilized to investigate the evolution of soil arching. However, the primary focus of previous studies has been on the mechanical and deformation behaviors of the arching field under the single-trapdoor condition, while the interaction of soil arching between adjacent trapdoors has not been well understood. In this paper, a series of discrete numerical models based on the plane–strain laboratory trapdoor test were established to investigate the interaction effect, with respect to stress redistributions, particle movement, anisotropy of contact forces, and energy regime. The effects of motion mode, namely the simultaneous and nonsimultaneous movement, and the spacing (B) between adjacent trapdoors on the arching performance were examined. The numerical results revealed that the simultaneous movement of twin trapdoor slightly influences earth pressures resting on the surface of both trapdoors. The deformation pattern is deeply influenced by a narrow spacing of 0.25B and characterized by two arching fields interacting with each other, resulting in a noticeable subsidence at the crest. The subsequent lowering of the second-lowered trapdoor under the nonsimultaneous movement condition increases pressures resting on the first-lowered trapdoor, yields additional settlement within the former arching field, and distorts adjacent arched force chains. An increase in spacing from 0.25B to 1B is beneficial for reducing the pressure increment, decreasing the arching deformations, minimizing the rotation of the major principal direction, and decreasing the friction energy distribution density above the stationary supports.
    • Download: (5.327Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Interaction of Soil Arching under Trapdoor Condition: Insights from 2D Discrete-Element Analysis

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283479
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorNing Bao
    contributor authorJing Wei
    contributor authorJian-feng Chen
    contributor authorRui Sun
    date accessioned2022-05-07T21:14:06Z
    date available2022-05-07T21:14:06Z
    date issued2022-6-1
    identifier other(ASCE)GM.1943-5622.0002346.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283479
    description abstractThe trapdoor/trapdoor-like model test has been widely utilized to investigate the evolution of soil arching. However, the primary focus of previous studies has been on the mechanical and deformation behaviors of the arching field under the single-trapdoor condition, while the interaction of soil arching between adjacent trapdoors has not been well understood. In this paper, a series of discrete numerical models based on the plane–strain laboratory trapdoor test were established to investigate the interaction effect, with respect to stress redistributions, particle movement, anisotropy of contact forces, and energy regime. The effects of motion mode, namely the simultaneous and nonsimultaneous movement, and the spacing (B) between adjacent trapdoors on the arching performance were examined. The numerical results revealed that the simultaneous movement of twin trapdoor slightly influences earth pressures resting on the surface of both trapdoors. The deformation pattern is deeply influenced by a narrow spacing of 0.25B and characterized by two arching fields interacting with each other, resulting in a noticeable subsidence at the crest. The subsequent lowering of the second-lowered trapdoor under the nonsimultaneous movement condition increases pressures resting on the first-lowered trapdoor, yields additional settlement within the former arching field, and distorts adjacent arched force chains. An increase in spacing from 0.25B to 1B is beneficial for reducing the pressure increment, decreasing the arching deformations, minimizing the rotation of the major principal direction, and decreasing the friction energy distribution density above the stationary supports.
    publisherASCE
    titleInteraction of Soil Arching under Trapdoor Condition: Insights from 2D Discrete-Element Analysis
    typeJournal Paper
    journal volume22
    journal issue6
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002346
    journal fristpage04022066
    journal lastpage04022066-17
    page17
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian