YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analytical Model for Failure Strength of Brittle Rocks under Triaxial Compression and Triaxial Extension

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 004::page 06022003
    Author:
    Hua Yu
    ,
    Kam Ng
    DOI: 10.1061/(ASCE)GM.1943-5622.0002334
    Publisher: ASCE
    Abstract: Rocks exhibit different failure strengths under triaxial compression and extension. The understanding and quantification of their relationship provide theoretical and practical benefits. Conventional Mohr-type criteria cannot distinguish rock failure strengths under triaxial compression and extension. To overcome this limitation, we present an analytical model based on Mohr failure theory to describe the relationship between the rock failure strengths under triaxial compression and extension in a Mohr plane. Our analytical model indicates that rock failure criteria under both triaxial compression and extension can be expressed in power-law forms. The corresponding strength magnitude and Mohr envelope curvature parameters are analytically determined using measured rock properties from uniaxial tension, uniaxial compression, and equibiaxial compression tests. This model is validated using experimental data of five rock types: granite, marble, basalt, dolomite, and sandstone. Compared with four well-known failure criteria, the proposed model demonstrates the ability to predict the failure strengths of rocks under both triaxial compression and extension.
    • Download: (977.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analytical Model for Failure Strength of Brittle Rocks under Triaxial Compression and Triaxial Extension

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283467
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHua Yu
    contributor authorKam Ng
    date accessioned2022-05-07T21:13:38Z
    date available2022-05-07T21:13:38Z
    date issued2022-4-1
    identifier other(ASCE)GM.1943-5622.0002334.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283467
    description abstractRocks exhibit different failure strengths under triaxial compression and extension. The understanding and quantification of their relationship provide theoretical and practical benefits. Conventional Mohr-type criteria cannot distinguish rock failure strengths under triaxial compression and extension. To overcome this limitation, we present an analytical model based on Mohr failure theory to describe the relationship between the rock failure strengths under triaxial compression and extension in a Mohr plane. Our analytical model indicates that rock failure criteria under both triaxial compression and extension can be expressed in power-law forms. The corresponding strength magnitude and Mohr envelope curvature parameters are analytically determined using measured rock properties from uniaxial tension, uniaxial compression, and equibiaxial compression tests. This model is validated using experimental data of five rock types: granite, marble, basalt, dolomite, and sandstone. Compared with four well-known failure criteria, the proposed model demonstrates the ability to predict the failure strengths of rocks under both triaxial compression and extension.
    publisherASCE
    titleAnalytical Model for Failure Strength of Brittle Rocks under Triaxial Compression and Triaxial Extension
    typeJournal Paper
    journal volume22
    journal issue4
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002334
    journal fristpage06022003
    journal lastpage06022003-9
    page9
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian