Kaolin Clay Reinforced with a Granular Column Containing Crushed Waste Glass or Traditional Construction SandsSource: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 004::page 04022030Author:Danish Kazmi
,
Mehdi Serati
,
David J. Williams
,
Sebastian Quintero Olaya
,
Sadaf Qasim
,
Yi Pik Cheng
,
J. Antonio H. Carraro
DOI: 10.1061/(ASCE)GM.1943-5622.0002322Publisher: ASCE
Abstract: Installation of granular columns is a cost-effective and versatile in situ technique to improve the shear strength, settlement, and drainage behavior of weak soils. It involves backfilling vertical boreholes in the ground with granular materials stiffer than the native soil, such as stone or compacted sand. However, the massive use and overexploitation of sand and natural aggregates have depleted their reserves in recent decades, causing damage to the environment, creating sand shortages, and skyrocketing their price. Hence, it is essential to develop a sustainable alternative to natural aggregates to construct granular columns. The ever-increasing stockpiles of waste glass could be a potential replacement for natural sand in several geotechnical construction applications, noting that both materials have a similar chemical composition. Using crushed waste glass (CWG) as an alternative to traditional natural and manufactured (quarried) sands in granular columns could offer a multipronged benefit by recycling nonbiodegradable waste (glass) and by conserving a depleting natural resource (sand). Using a large direct shear (LDS) machine, this study investigated the shear strength behavior of kaolin (to represent a typical weak soil) reinforced with a central granular column. Three different materials were separately used to backfill the column, including natural sand (NS), manufactured sand (MS), and CWG. The results revealed that the geocomposites containing the CWG column have the highest peak friction angle and relatively greater shear strength under high normal stresses, favoring the potential use of CWG as a green alternative to traditional sands in backfilling granular columns, ultimately supporting resource conservation, waste recycling, and the paradigm shift toward a circular economy.
|
Collections
Show full item record
| contributor author | Danish Kazmi | |
| contributor author | Mehdi Serati | |
| contributor author | David J. Williams | |
| contributor author | Sebastian Quintero Olaya | |
| contributor author | Sadaf Qasim | |
| contributor author | Yi Pik Cheng | |
| contributor author | J. Antonio H. Carraro | |
| date accessioned | 2022-05-07T21:12:56Z | |
| date available | 2022-05-07T21:12:56Z | |
| date issued | 2022-4-1 | |
| identifier other | (ASCE)GM.1943-5622.0002322.pdf | |
| identifier uri | http://yetl.yabesh.ir/yetl1/handle/yetl/4283453 | |
| description abstract | Installation of granular columns is a cost-effective and versatile in situ technique to improve the shear strength, settlement, and drainage behavior of weak soils. It involves backfilling vertical boreholes in the ground with granular materials stiffer than the native soil, such as stone or compacted sand. However, the massive use and overexploitation of sand and natural aggregates have depleted their reserves in recent decades, causing damage to the environment, creating sand shortages, and skyrocketing their price. Hence, it is essential to develop a sustainable alternative to natural aggregates to construct granular columns. The ever-increasing stockpiles of waste glass could be a potential replacement for natural sand in several geotechnical construction applications, noting that both materials have a similar chemical composition. Using crushed waste glass (CWG) as an alternative to traditional natural and manufactured (quarried) sands in granular columns could offer a multipronged benefit by recycling nonbiodegradable waste (glass) and by conserving a depleting natural resource (sand). Using a large direct shear (LDS) machine, this study investigated the shear strength behavior of kaolin (to represent a typical weak soil) reinforced with a central granular column. Three different materials were separately used to backfill the column, including natural sand (NS), manufactured sand (MS), and CWG. The results revealed that the geocomposites containing the CWG column have the highest peak friction angle and relatively greater shear strength under high normal stresses, favoring the potential use of CWG as a green alternative to traditional sands in backfilling granular columns, ultimately supporting resource conservation, waste recycling, and the paradigm shift toward a circular economy. | |
| publisher | ASCE | |
| title | Kaolin Clay Reinforced with a Granular Column Containing Crushed Waste Glass or Traditional Construction Sands | |
| type | Journal Paper | |
| journal volume | 22 | |
| journal issue | 4 | |
| journal title | International Journal of Geomechanics | |
| identifier doi | 10.1061/(ASCE)GM.1943-5622.0002322 | |
| journal fristpage | 04022030 | |
| journal lastpage | 04022030-12 | |
| page | 12 | |
| tree | International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 004 | |
| contenttype | Fulltext |