YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    •   YE&T Library
    • ASCE
    • International Journal of Geomechanics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Active Earth Pressure of Finite Width Soil Considering Intermediate Principal Stress and Soil Arching Effects

    Source: International Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 003::page 04021294
    Author:
    Hui Liu
    ,
    Dezhi Kong
    DOI: 10.1061/(ASCE)GM.1943-5622.0002298
    Publisher: ASCE
    Abstract: Traditional earth pressure theories are based on the assumption of semi-infinite space. The existence of intermediate principal stress and soil arching effects is ignored, which will cause significant errors in the application of finite width soil. This study introduced the intermediate principal stress based on the twin-shear unified strength theory; the stress deflection caused by soil arching and the uniform surcharge on the retained soil surface were also considered. An improved calculation method for cohesive soil’s lateral earth pressure coefficient, an analytical solution for active earth pressure of finite width soil, the resultant force, and its action point were proposed. The lateral earth pressure distribution of finite width cohesive soil was studied by calculation examples. In addition, relevant parameters were also analyzed. The results indicate that due to the influence of the intermediate principal stress and soil arching effects, the resultant active earth pressure is lower than the traditional method. The lateral earth pressure coefficient gradually increases with the depth, but it is always lower than the traditional one. As the soil width increases, the resultant force action point presents a nonlinear trend that first decreases, then rises, and stabilizes. The proposed method was compared with the previous studies and got better results; it can provide a new idea for estimating the active earth pressure of finite width soil.
    • Download: (1.312Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Active Earth Pressure of Finite Width Soil Considering Intermediate Principal Stress and Soil Arching Effects

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283428
    Collections
    • International Journal of Geomechanics

    Show full item record

    contributor authorHui Liu
    contributor authorDezhi Kong
    date accessioned2022-05-07T21:11:47Z
    date available2022-05-07T21:11:47Z
    date issued2022-3-1
    identifier other(ASCE)GM.1943-5622.0002298.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283428
    description abstractTraditional earth pressure theories are based on the assumption of semi-infinite space. The existence of intermediate principal stress and soil arching effects is ignored, which will cause significant errors in the application of finite width soil. This study introduced the intermediate principal stress based on the twin-shear unified strength theory; the stress deflection caused by soil arching and the uniform surcharge on the retained soil surface were also considered. An improved calculation method for cohesive soil’s lateral earth pressure coefficient, an analytical solution for active earth pressure of finite width soil, the resultant force, and its action point were proposed. The lateral earth pressure distribution of finite width cohesive soil was studied by calculation examples. In addition, relevant parameters were also analyzed. The results indicate that due to the influence of the intermediate principal stress and soil arching effects, the resultant active earth pressure is lower than the traditional method. The lateral earth pressure coefficient gradually increases with the depth, but it is always lower than the traditional one. As the soil width increases, the resultant force action point presents a nonlinear trend that first decreases, then rises, and stabilizes. The proposed method was compared with the previous studies and got better results; it can provide a new idea for estimating the active earth pressure of finite width soil.
    publisherASCE
    titleActive Earth Pressure of Finite Width Soil Considering Intermediate Principal Stress and Soil Arching Effects
    typeJournal Paper
    journal volume22
    journal issue3
    journal titleInternational Journal of Geomechanics
    identifier doi10.1061/(ASCE)GM.1943-5622.0002298
    journal fristpage04021294
    journal lastpage04021294-8
    page8
    treeInternational Journal of Geomechanics:;2022:;Volume ( 022 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian