YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    •   YE&T Library
    • ASCE
    • Journal of Aerospace Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Anti-Unwinding Immersion and Invariance Adaptive Attitude Control of Rigid Spacecraft with Inertia Uncertainties

    Source: Journal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 002::page 04021137
    Author:
    Dongdong Xia
    ,
    Xiaokui Yue
    DOI: 10.1061/(ASCE)AS.1943-5525.0001387
    Publisher: ASCE
    Abstract: A modular anti-unwinding dynamic scaling–based immersion and invariance (I&I) adaptive control is devised for rigid spacecraft attitude with inertia uncertainties. It is shown that the parametric regressor matrix cannot be integrable in the attitude dynamics, which results in a nonanalytical solution to the partial differential equations in the I&I controller design. First, in order to overcome the integrability obstacle, the proposed method provides a general and simple matrix reconstruction to make the regressor matrix integrable. Second and foremost, by virtue of a novel modified scaling factor involving saturation function, this paper shows that this method does not require any prior knowledge of the spacecraft inertia matrix and can be conducted without a scaling factor in the controller implementation, which achieves a simpler controller structure and lower dimensional dynamic extension. Moreover, the unwinding problem typically arising in attitude quaternion dynamics is addressed just by the initial value of the attitude quaternion. Finally, numerical simulations are carried out to demonstrate the effectiveness and anti-unwinding characteristic of the proposed controller.
    • Download: (1.558Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Anti-Unwinding Immersion and Invariance Adaptive Attitude Control of Rigid Spacecraft with Inertia Uncertainties

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4283402
    Collections
    • Journal of Aerospace Engineering

    Show full item record

    contributor authorDongdong Xia
    contributor authorXiaokui Yue
    date accessioned2022-05-07T21:10:04Z
    date available2022-05-07T21:10:04Z
    date issued2021-12-29
    identifier other(ASCE)AS.1943-5525.0001387.pdf
    identifier urihttp://yetl.yabesh.ir/yetl1/handle/yetl/4283402
    description abstractA modular anti-unwinding dynamic scaling–based immersion and invariance (I&I) adaptive control is devised for rigid spacecraft attitude with inertia uncertainties. It is shown that the parametric regressor matrix cannot be integrable in the attitude dynamics, which results in a nonanalytical solution to the partial differential equations in the I&I controller design. First, in order to overcome the integrability obstacle, the proposed method provides a general and simple matrix reconstruction to make the regressor matrix integrable. Second and foremost, by virtue of a novel modified scaling factor involving saturation function, this paper shows that this method does not require any prior knowledge of the spacecraft inertia matrix and can be conducted without a scaling factor in the controller implementation, which achieves a simpler controller structure and lower dimensional dynamic extension. Moreover, the unwinding problem typically arising in attitude quaternion dynamics is addressed just by the initial value of the attitude quaternion. Finally, numerical simulations are carried out to demonstrate the effectiveness and anti-unwinding characteristic of the proposed controller.
    publisherASCE
    titleAnti-Unwinding Immersion and Invariance Adaptive Attitude Control of Rigid Spacecraft with Inertia Uncertainties
    typeJournal Paper
    journal volume35
    journal issue2
    journal titleJournal of Aerospace Engineering
    identifier doi10.1061/(ASCE)AS.1943-5525.0001387
    journal fristpage04021137
    journal lastpage04021137-10
    page10
    treeJournal of Aerospace Engineering:;2021:;Volume ( 035 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian